由李对产生的$L_{\leqslant 3}$代数的内部对称性

Pub Date : 2023-11-20 DOI:10.4310/pamq.2023.v19.n4.a16
Dadi Ni, Jiahao Cheng, Zhuo Chen, Chen He
{"title":"由李对产生的$L_{\\leqslant 3}$代数的内部对称性","authors":"Dadi Ni, Jiahao Cheng, Zhuo Chen, Chen He","doi":"10.4310/pamq.2023.v19.n4.a16","DOIUrl":null,"url":null,"abstract":"$\\def\\DerL{\\operatorname{Der}(L)}$A Lie pair is an inclusion $A$ to $L$ of Lie algebroids over the same base manifold. In an earlier work, the third author with Bandiera, Stiénon, and Xu introduced a canonical $L_{\\leqslant 3}$ algebra $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$ whose unary bracket is the Chevalley–Eilenberg differential arising from every Lie pair $(L,A)$. In this note, we prove that to such a Lie pair there is an associated Lie algebra action by $\\operatorname{Der}(L)$ on the $L_{\\leqslant 3}$ algebra $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$. Here $DerL$ is the space of derivations on the Lie algebroid $L$, or infinitesimal automorphisms of $L$. The said action gives rise to a larger scope of gauge equivalences of Maurer–Cartan elements in $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$, and for this reason we elect to call the $\\DerL$-action internal symmetry of $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal symmetry of the $L_{\\\\leqslant 3}$ algebra arising from a Lie pair\",\"authors\":\"Dadi Ni, Jiahao Cheng, Zhuo Chen, Chen He\",\"doi\":\"10.4310/pamq.2023.v19.n4.a16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\DerL{\\\\operatorname{Der}(L)}$A Lie pair is an inclusion $A$ to $L$ of Lie algebroids over the same base manifold. In an earlier work, the third author with Bandiera, Stiénon, and Xu introduced a canonical $L_{\\\\leqslant 3}$ algebra $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$ whose unary bracket is the Chevalley–Eilenberg differential arising from every Lie pair $(L,A)$. In this note, we prove that to such a Lie pair there is an associated Lie algebra action by $\\\\operatorname{Der}(L)$ on the $L_{\\\\leqslant 3}$ algebra $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$. Here $DerL$ is the space of derivations on the Lie algebroid $L$, or infinitesimal automorphisms of $L$. The said action gives rise to a larger scope of gauge equivalences of Maurer–Cartan elements in $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$, and for this reason we elect to call the $\\\\DerL$-action internal symmetry of $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$\def\DerL{\operatorname{Der}(L)}$李对是在相同基流形上的李代数群$A$到$L$的包含。在较早的一篇文章中,第三位作者与Bandiera, stisamnon和Xu一起引入了一个正则$L_{\leqslant 3}$代数$\Gamma (\wedge^\bullet A^\vee \otimes L/A)$,其一元括号是由每个Lie对产生的Chevalley-Eilenberg微分$(L,A)$。在这篇笔记中,我们通过$\operatorname{Der}(L)$在$L_{\leqslant 3}$代数$\Gamma (\wedge^\bullet A^\vee \otimes L/A)$上证明了对这样一个李对存在一个相关的李代数作用。这里$DerL$是李代数体$L$上的导数空间,或$L$的无穷小自同构。由于上述作用,$\Gamma (\wedge^\bullet A^\vee \otimes L/A)$中毛雷尔-卡坦元的规范等价范围更大,因此我们选择称$\Gamma (\wedge^\bullet A^\vee \otimes L/A)$的$\DerL$作用为内部对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Internal symmetry of the $L_{\leqslant 3}$ algebra arising from a Lie pair
$\def\DerL{\operatorname{Der}(L)}$A Lie pair is an inclusion $A$ to $L$ of Lie algebroids over the same base manifold. In an earlier work, the third author with Bandiera, Stiénon, and Xu introduced a canonical $L_{\leqslant 3}$ algebra $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$ whose unary bracket is the Chevalley–Eilenberg differential arising from every Lie pair $(L,A)$. In this note, we prove that to such a Lie pair there is an associated Lie algebra action by $\operatorname{Der}(L)$ on the $L_{\leqslant 3}$ algebra $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$. Here $DerL$ is the space of derivations on the Lie algebroid $L$, or infinitesimal automorphisms of $L$. The said action gives rise to a larger scope of gauge equivalences of Maurer–Cartan elements in $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$, and for this reason we elect to call the $\DerL$-action internal symmetry of $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信