{"title":"由李对产生的$L_{\\leqslant 3}$代数的内部对称性","authors":"Dadi Ni, Jiahao Cheng, Zhuo Chen, Chen He","doi":"10.4310/pamq.2023.v19.n4.a16","DOIUrl":null,"url":null,"abstract":"$\\def\\DerL{\\operatorname{Der}(L)}$A Lie pair is an inclusion $A$ to $L$ of Lie algebroids over the same base manifold. In an earlier work, the third author with Bandiera, Stiénon, and Xu introduced a canonical $L_{\\leqslant 3}$ algebra $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$ whose unary bracket is the Chevalley–Eilenberg differential arising from every Lie pair $(L,A)$. In this note, we prove that to such a Lie pair there is an associated Lie algebra action by $\\operatorname{Der}(L)$ on the $L_{\\leqslant 3}$ algebra $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$. Here $DerL$ is the space of derivations on the Lie algebroid $L$, or infinitesimal automorphisms of $L$. The said action gives rise to a larger scope of gauge equivalences of Maurer–Cartan elements in $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$, and for this reason we elect to call the $\\DerL$-action internal symmetry of $\\Gamma (\\wedge^\\bullet A^\\vee \\otimes L/A)$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"263 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal symmetry of the $L_{\\\\leqslant 3}$ algebra arising from a Lie pair\",\"authors\":\"Dadi Ni, Jiahao Cheng, Zhuo Chen, Chen He\",\"doi\":\"10.4310/pamq.2023.v19.n4.a16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\DerL{\\\\operatorname{Der}(L)}$A Lie pair is an inclusion $A$ to $L$ of Lie algebroids over the same base manifold. In an earlier work, the third author with Bandiera, Stiénon, and Xu introduced a canonical $L_{\\\\leqslant 3}$ algebra $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$ whose unary bracket is the Chevalley–Eilenberg differential arising from every Lie pair $(L,A)$. In this note, we prove that to such a Lie pair there is an associated Lie algebra action by $\\\\operatorname{Der}(L)$ on the $L_{\\\\leqslant 3}$ algebra $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$. Here $DerL$ is the space of derivations on the Lie algebroid $L$, or infinitesimal automorphisms of $L$. The said action gives rise to a larger scope of gauge equivalences of Maurer–Cartan elements in $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$, and for this reason we elect to call the $\\\\DerL$-action internal symmetry of $\\\\Gamma (\\\\wedge^\\\\bullet A^\\\\vee \\\\otimes L/A)$.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"263 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a16\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Internal symmetry of the $L_{\leqslant 3}$ algebra arising from a Lie pair
$\def\DerL{\operatorname{Der}(L)}$A Lie pair is an inclusion $A$ to $L$ of Lie algebroids over the same base manifold. In an earlier work, the third author with Bandiera, Stiénon, and Xu introduced a canonical $L_{\leqslant 3}$ algebra $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$ whose unary bracket is the Chevalley–Eilenberg differential arising from every Lie pair $(L,A)$. In this note, we prove that to such a Lie pair there is an associated Lie algebra action by $\operatorname{Der}(L)$ on the $L_{\leqslant 3}$ algebra $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$. Here $DerL$ is the space of derivations on the Lie algebroid $L$, or infinitesimal automorphisms of $L$. The said action gives rise to a larger scope of gauge equivalences of Maurer–Cartan elements in $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$, and for this reason we elect to call the $\DerL$-action internal symmetry of $\Gamma (\wedge^\bullet A^\vee \otimes L/A)$.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.