基于小波的贝叶斯近似核方法用于高维数据分析

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Wenxing Guo, Xueying Zhang, Bei Jiang, Linglong Kong, Yaozhong Hu
{"title":"基于小波的贝叶斯近似核方法用于高维数据分析","authors":"Wenxing Guo, Xueying Zhang, Bei Jiang, Linglong Kong, Yaozhong Hu","doi":"10.1007/s00180-023-01438-1","DOIUrl":null,"url":null,"abstract":"<p>Kernel methods are often used for nonlinear regression and classification in statistics and machine learning because they are computationally cheap and accurate. The wavelet kernel functions based on wavelet analysis can efficiently approximate any nonlinear functions. In this article, we construct a novel wavelet kernel function in terms of random wavelet bases and define a linear vector space that captures nonlinear structures in reproducing kernel Hilbert spaces (RKHS). Based on the wavelet transform, the data are mapped into a low-dimensional randomized feature space and convert kernel function into operations of a linear machine. We then propose a new Bayesian approximate kernel model with the random wavelet expansion and use the Gibbs sampler to compute the model’s parameters. Finally, some simulation studies and two real datasets analyses are carried out to demonstrate that the proposed method displays good stability, prediction performance compared to some other existing methods.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"49 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-based Bayesian approximate kernel method for high-dimensional data analysis\",\"authors\":\"Wenxing Guo, Xueying Zhang, Bei Jiang, Linglong Kong, Yaozhong Hu\",\"doi\":\"10.1007/s00180-023-01438-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kernel methods are often used for nonlinear regression and classification in statistics and machine learning because they are computationally cheap and accurate. The wavelet kernel functions based on wavelet analysis can efficiently approximate any nonlinear functions. In this article, we construct a novel wavelet kernel function in terms of random wavelet bases and define a linear vector space that captures nonlinear structures in reproducing kernel Hilbert spaces (RKHS). Based on the wavelet transform, the data are mapped into a low-dimensional randomized feature space and convert kernel function into operations of a linear machine. We then propose a new Bayesian approximate kernel model with the random wavelet expansion and use the Gibbs sampler to compute the model’s parameters. Finally, some simulation studies and two real datasets analyses are carried out to demonstrate that the proposed method displays good stability, prediction performance compared to some other existing methods.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-023-01438-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01438-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

核方法通常用于统计和机器学习中的非线性回归和分类,因为它们在计算上便宜且准确。基于小波分析的小波核函数可以有效地逼近任意非线性函数。在本文中,我们用随机小波基构造了一个新的小波核函数,并定义了一个线性向量空间来捕获再现核希尔伯特空间(RKHS)中的非线性结构。基于小波变换,将数据映射到低维随机特征空间中,并将核函数转换为线性机器的操作。然后我们提出了一个新的贝叶斯近似核模型与随机小波展开和使用吉布斯采样器计算模型的参数。最后,通过仿真研究和两个真实数据集的分析表明,与现有方法相比,该方法具有良好的稳定性和预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wavelet-based Bayesian approximate kernel method for high-dimensional data analysis

Wavelet-based Bayesian approximate kernel method for high-dimensional data analysis

Kernel methods are often used for nonlinear regression and classification in statistics and machine learning because they are computationally cheap and accurate. The wavelet kernel functions based on wavelet analysis can efficiently approximate any nonlinear functions. In this article, we construct a novel wavelet kernel function in terms of random wavelet bases and define a linear vector space that captures nonlinear structures in reproducing kernel Hilbert spaces (RKHS). Based on the wavelet transform, the data are mapped into a low-dimensional randomized feature space and convert kernel function into operations of a linear machine. We then propose a new Bayesian approximate kernel model with the random wavelet expansion and use the Gibbs sampler to compute the model’s parameters. Finally, some simulation studies and two real datasets analyses are carried out to demonstrate that the proposed method displays good stability, prediction performance compared to some other existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信