Wenxing Guo, Xueying Zhang, Bei Jiang, Linglong Kong, Yaozhong Hu
{"title":"基于小波的贝叶斯近似核方法用于高维数据分析","authors":"Wenxing Guo, Xueying Zhang, Bei Jiang, Linglong Kong, Yaozhong Hu","doi":"10.1007/s00180-023-01438-1","DOIUrl":null,"url":null,"abstract":"<p>Kernel methods are often used for nonlinear regression and classification in statistics and machine learning because they are computationally cheap and accurate. The wavelet kernel functions based on wavelet analysis can efficiently approximate any nonlinear functions. In this article, we construct a novel wavelet kernel function in terms of random wavelet bases and define a linear vector space that captures nonlinear structures in reproducing kernel Hilbert spaces (RKHS). Based on the wavelet transform, the data are mapped into a low-dimensional randomized feature space and convert kernel function into operations of a linear machine. We then propose a new Bayesian approximate kernel model with the random wavelet expansion and use the Gibbs sampler to compute the model’s parameters. Finally, some simulation studies and two real datasets analyses are carried out to demonstrate that the proposed method displays good stability, prediction performance compared to some other existing methods.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"49 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-based Bayesian approximate kernel method for high-dimensional data analysis\",\"authors\":\"Wenxing Guo, Xueying Zhang, Bei Jiang, Linglong Kong, Yaozhong Hu\",\"doi\":\"10.1007/s00180-023-01438-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kernel methods are often used for nonlinear regression and classification in statistics and machine learning because they are computationally cheap and accurate. The wavelet kernel functions based on wavelet analysis can efficiently approximate any nonlinear functions. In this article, we construct a novel wavelet kernel function in terms of random wavelet bases and define a linear vector space that captures nonlinear structures in reproducing kernel Hilbert spaces (RKHS). Based on the wavelet transform, the data are mapped into a low-dimensional randomized feature space and convert kernel function into operations of a linear machine. We then propose a new Bayesian approximate kernel model with the random wavelet expansion and use the Gibbs sampler to compute the model’s parameters. Finally, some simulation studies and two real datasets analyses are carried out to demonstrate that the proposed method displays good stability, prediction performance compared to some other existing methods.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-023-01438-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01438-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Wavelet-based Bayesian approximate kernel method for high-dimensional data analysis
Kernel methods are often used for nonlinear regression and classification in statistics and machine learning because they are computationally cheap and accurate. The wavelet kernel functions based on wavelet analysis can efficiently approximate any nonlinear functions. In this article, we construct a novel wavelet kernel function in terms of random wavelet bases and define a linear vector space that captures nonlinear structures in reproducing kernel Hilbert spaces (RKHS). Based on the wavelet transform, the data are mapped into a low-dimensional randomized feature space and convert kernel function into operations of a linear machine. We then propose a new Bayesian approximate kernel model with the random wavelet expansion and use the Gibbs sampler to compute the model’s parameters. Finally, some simulation studies and two real datasets analyses are carried out to demonstrate that the proposed method displays good stability, prediction performance compared to some other existing methods.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.