Ricci曲率有界以下的Kähler流形的Gromov-Hausdorff极限

IF 2.4 1区 数学 Q1 MATHEMATICS
Gang Liu, Gábor Székelyhidi
{"title":"Ricci曲率有界以下的Kähler流形的Gromov-Hausdorff极限","authors":"Gang Liu, Gábor Székelyhidi","doi":"10.1007/s00039-022-00594-8","DOIUrl":null,"url":null,"abstract":"<p>We show that non-collapsed Gromov–Hausdorff limits of polarized Kähler manifolds, with Ricci curvature bounded below, are normal projective varieties, and the metric singularities of the limit space are precisely given by a countable union of analytic subvarieties. This extends a fundamental result of Donaldson–Sun, in which 2-sided Ricci curvature bounds were assumed. As a basic ingredient we show that, under lower Ricci curvature bounds, almost Euclidean balls in Kähler manifolds admit good holomorphic coordinates. Further applications are integral bounds for the scalar curvature on balls, and a rigidity theorem for Kähler manifolds with almost Euclidean volume growth.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"25 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gromov–Hausdorff limits of Kähler manifolds with Ricci curvature bounded below\",\"authors\":\"Gang Liu, Gábor Székelyhidi\",\"doi\":\"10.1007/s00039-022-00594-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that non-collapsed Gromov–Hausdorff limits of polarized Kähler manifolds, with Ricci curvature bounded below, are normal projective varieties, and the metric singularities of the limit space are precisely given by a countable union of analytic subvarieties. This extends a fundamental result of Donaldson–Sun, in which 2-sided Ricci curvature bounds were assumed. As a basic ingredient we show that, under lower Ricci curvature bounds, almost Euclidean balls in Kähler manifolds admit good holomorphic coordinates. Further applications are integral bounds for the scalar curvature on balls, and a rigidity theorem for Kähler manifolds with almost Euclidean volume growth.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-022-00594-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-022-00594-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有Ricci曲率下界的极化Kähler流形的非坍缩Gromov-Hausdorff极限是正规的射影变体,并且极限空间的度量奇点是由解析子变体的可数并精确给出的。这扩展了Donaldson-Sun的一个基本结果,其中假设了双面Ricci曲率边界。作为一个基本成分,我们证明了在下里奇曲率界下,Kähler流形中的几乎欧几里得球承认良好的全纯坐标。进一步的应用是球上标量曲率的积分界,以及几乎具有欧几里得体积增长的Kähler流形的刚性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gromov–Hausdorff limits of Kähler manifolds with Ricci curvature bounded below

We show that non-collapsed Gromov–Hausdorff limits of polarized Kähler manifolds, with Ricci curvature bounded below, are normal projective varieties, and the metric singularities of the limit space are precisely given by a countable union of analytic subvarieties. This extends a fundamental result of Donaldson–Sun, in which 2-sided Ricci curvature bounds were assumed. As a basic ingredient we show that, under lower Ricci curvature bounds, almost Euclidean balls in Kähler manifolds admit good holomorphic coordinates. Further applications are integral bounds for the scalar curvature on balls, and a rigidity theorem for Kähler manifolds with almost Euclidean volume growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信