无l形构型的子集

IF 1.3 1区 数学 Q1 MATHEMATICS
Sarah Peluse
{"title":"无l形构型的子集","authors":"Sarah Peluse","doi":"10.1112/s0010437x2300756x","DOIUrl":null,"url":null,"abstract":"<p>Fix a prime <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$p\\geq 11$</span></span></img></span></span>. We show that there exists a positive integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$m$</span></span></img></span></span> such that any subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_p^n\\times \\mathbb {F}_p^n$</span></span></img></span></span> containing no nontrivial configurations of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$(x,y)$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$(x,y+z)$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$(x,y+2z)$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$(x+z,y)$</span></span></img></span></span> must have density <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\ll 1/\\log _{m}{n}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\log _{m}$</span></span></img></span></span> denotes the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$m$</span></span></img></span></span>-fold iterated logarithm. This gives the first reasonable bound in the multidimensional Szemerédi theorem for a two-dimensional four-point configuration in any setting.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subsets of without L-shaped configurations\",\"authors\":\"Sarah Peluse\",\"doi\":\"10.1112/s0010437x2300756x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fix a prime <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p\\\\geq 11$</span></span></img></span></span>. We show that there exists a positive integer <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m$</span></span></img></span></span> such that any subset of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_p^n\\\\times \\\\mathbb {F}_p^n$</span></span></img></span></span> containing no nontrivial configurations of the form <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(x,y)$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(x,y+z)$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(x,y+2z)$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(x+z,y)$</span></span></img></span></span> must have density <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ll 1/\\\\log _{m}{n}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\log _{m}$</span></span></img></span></span> denotes the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231201185654640-0378:S0010437X2300756X:S0010437X2300756X_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m$</span></span></img></span></span>-fold iterated logarithm. This gives the first reasonable bound in the multidimensional Szemerédi theorem for a two-dimensional four-point configuration in any setting.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x2300756x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x2300756x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

修复一个质数$p\geq 11$。我们证明了存在一个正整数$m$,使得$\mathbb {F}_p^n\times \mathbb {F}_p^n$的任何子集不包含$(x,y)$, $(x,y+z)$, $(x,y+2z)$, $(x+z,y)$的非寻常配置必须具有密度$\ll 1/\log _{m}{n}$,其中$\log _{m}$表示$m$ -fold迭代对数。本文给出了二维四点位形在任意情况下的多维szemersamedi定理的第一个合理界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subsets of without L-shaped configurations

Fix a prime $p\geq 11$. We show that there exists a positive integer $m$ such that any subset of $\mathbb {F}_p^n\times \mathbb {F}_p^n$ containing no nontrivial configurations of the form $(x,y)$, $(x,y+z)$, $(x,y+2z)$, $(x+z,y)$ must have density $\ll 1/\log _{m}{n}$, where $\log _{m}$ denotes the $m$-fold iterated logarithm. This gives the first reasonable bound in the multidimensional Szemerédi theorem for a two-dimensional four-point configuration in any setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信