{"title":"f -同晶的Drinfeld引理,II: Tannakian方法","authors":"Kiran S. Kedlaya, Daxin Xu","doi":"10.1112/s0010437x23007571","DOIUrl":null,"url":null,"abstract":"<p>We prove a Tannakian form of Drinfeld's lemma for isocrystals on a variety over a finite field, equipped with actions of partial Frobenius operators. This provides an intermediate step towards transferring V. Lafforgue's work on the Langlands correspondence over function fields from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231130101456566-0653:S0010437X23007571:S0010437X23007571_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell$</span></span></img></span></span>-adic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231130101456566-0653:S0010437X23007571:S0010437X23007571_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-adic coefficients. We also discuss a motivic variant and a local variant of Drinfeld's lemma.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"116 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Drinfeld's lemma for F-isocrystals, II: Tannakian approach\",\"authors\":\"Kiran S. Kedlaya, Daxin Xu\",\"doi\":\"10.1112/s0010437x23007571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a Tannakian form of Drinfeld's lemma for isocrystals on a variety over a finite field, equipped with actions of partial Frobenius operators. This provides an intermediate step towards transferring V. Lafforgue's work on the Langlands correspondence over function fields from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231130101456566-0653:S0010437X23007571:S0010437X23007571_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell$</span></span></img></span></span>-adic to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231130101456566-0653:S0010437X23007571:S0010437X23007571_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span></img></span></span>-adic coefficients. We also discuss a motivic variant and a local variant of Drinfeld's lemma.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007571\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007571","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
我们证明了有限域上具有部分Frobenius算子作用的变异体上等晶体的Drinfeld引理的Tannakian形式。这为将V. Lafforgue关于函数域上的Langlands对应从$\ well $-adic系数转移到$p$-adic系数提供了一个中间步骤。我们还讨论了德林菲尔德引理的动机变体和局部变体。
Drinfeld's lemma for F-isocrystals, II: Tannakian approach
We prove a Tannakian form of Drinfeld's lemma for isocrystals on a variety over a finite field, equipped with actions of partial Frobenius operators. This provides an intermediate step towards transferring V. Lafforgue's work on the Langlands correspondence over function fields from $\ell$-adic to $p$-adic coefficients. We also discuss a motivic variant and a local variant of Drinfeld's lemma.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.