确定酉群特征变的斜率

IF 1.3 1区 数学 Q1 MATHEMATICS
Lynnelle Ye
{"title":"确定酉群特征变的斜率","authors":"Lynnelle Ye","doi":"10.1112/s0010437x23007534","DOIUrl":null,"url":null,"abstract":"<p>We generalize bounds of Liu–Wan–Xiao for slopes in eigencurves for definite unitary groups of rank <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span> to slopes in eigenvarieties for definite unitary groups of any rank. We show that for a definite unitary group of rank <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>, the Newton polygon of the characteristic power series of the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$U_p$</span></span></img></span></span> Hecke operator has exact growth rate <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$x^{1+2/{n(n-1)}}$</span></span></img></span></span>, times a constant proportional to the distance of the weight from the boundary of weight space. The proof goes through the classification of forms associated to principal series representations. We also give a consequence for the geometry of these eigenvarieties over the boundary of weight space.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Slopes in eigenvarieties for definite unitary groups\",\"authors\":\"Lynnelle Ye\",\"doi\":\"10.1112/s0010437x23007534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalize bounds of Liu–Wan–Xiao for slopes in eigencurves for definite unitary groups of rank <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span> to slopes in eigenvarieties for definite unitary groups of any rank. We show that for a definite unitary group of rank <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span>, the Newton polygon of the characteristic power series of the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$U_p$</span></span></img></span></span> Hecke operator has exact growth rate <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121150929901-0824:S0010437X23007534:S0010437X23007534_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x^{1+2/{n(n-1)}}$</span></span></img></span></span>, times a constant proportional to the distance of the weight from the boundary of weight space. The proof goes through the classification of forms associated to principal series representations. We also give a consequence for the geometry of these eigenvarieties over the boundary of weight space.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007534\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007534","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

将刘万肖关于秩为$2的定酉群特征曲线斜率的界推广到任意秩的定酉群特征变的斜率。我们证明了对于秩为$n$的定酉群,$U_p$ Hecke算子的特征幂级数的牛顿多边形具有精确的增长率$x^{1+2/{n(n-1)}}$,乘以一个与权值到权空间边界的距离成正比的常数。证明通过与主级数表示相关的形式分类。我们也给出了这些特征变在权空间边界上的几何性质的一个推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slopes in eigenvarieties for definite unitary groups

We generalize bounds of Liu–Wan–Xiao for slopes in eigencurves for definite unitary groups of rank $2$ to slopes in eigenvarieties for definite unitary groups of any rank. We show that for a definite unitary group of rank $n$, the Newton polygon of the characteristic power series of the $U_p$ Hecke operator has exact growth rate $x^{1+2/{n(n-1)}}$, times a constant proportional to the distance of the weight from the boundary of weight space. The proof goes through the classification of forms associated to principal series representations. We also give a consequence for the geometry of these eigenvarieties over the boundary of weight space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信