{"title":"交叉络合物和未分枝𝐿-factors","authors":"Yiannis Sakellaridis, Jonathan Wang","doi":"10.1090/jams/990","DOIUrl":null,"url":null,"abstract":"Abstract:Let $X$ be an affine spherical variety, possibly singular, and $\\mathsf L^+X$ its arc space. The intersection complex of $\\mathsf L^+X$, or rather of its finite-dimensional formal models, is conjectured to be related to special values of local unramified $L$-functions. Such relationships were previously established in Braverman–Finkelberg–Gaitsgory–Mirković for the affine closure of the quotient of a reductive group by the unipotent radical of a parabolic, and in Bouthier–Ngô–Sakellaridis for toric varieties and $L$-monoids. In this paper, we compute this intersection complex for the large class of those spherical $G$-varieties whose dual group is equal to $\\check G$, and the stalks of its nearby cycles on the horospherical degeneration of $X$. We formulate the answer in terms of a Kashiwara crystal, which conjecturally corresponds to a finite-dimensional $\\check G$-representation determined by the set of $B$-invariant valuations on $X$. We prove the latter conjecture in many cases. Under the sheaf–function dictionary, our calculations give a formula for the Plancherel density of the IC function of $\\mathsf L^+X$ as a ratio of local $L$-values for a large class of spherical varieties. <hr align=\"left\" noshade=\"noshade\" width=\"200\"/>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"22 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection complexes and unramified 𝐿-factors\",\"authors\":\"Yiannis Sakellaridis, Jonathan Wang\",\"doi\":\"10.1090/jams/990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:Let $X$ be an affine spherical variety, possibly singular, and $\\\\mathsf L^+X$ its arc space. The intersection complex of $\\\\mathsf L^+X$, or rather of its finite-dimensional formal models, is conjectured to be related to special values of local unramified $L$-functions. Such relationships were previously established in Braverman–Finkelberg–Gaitsgory–Mirković for the affine closure of the quotient of a reductive group by the unipotent radical of a parabolic, and in Bouthier–Ngô–Sakellaridis for toric varieties and $L$-monoids. In this paper, we compute this intersection complex for the large class of those spherical $G$-varieties whose dual group is equal to $\\\\check G$, and the stalks of its nearby cycles on the horospherical degeneration of $X$. We formulate the answer in terms of a Kashiwara crystal, which conjecturally corresponds to a finite-dimensional $\\\\check G$-representation determined by the set of $B$-invariant valuations on $X$. We prove the latter conjecture in many cases. Under the sheaf–function dictionary, our calculations give a formula for the Plancherel density of the IC function of $\\\\mathsf L^+X$ as a ratio of local $L$-values for a large class of spherical varieties. <hr align=\\\"left\\\" noshade=\\\"noshade\\\" width=\\\"200\\\"/>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/990\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/990","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract:Let $X$ be an affine spherical variety, possibly singular, and $\mathsf L^+X$ its arc space. The intersection complex of $\mathsf L^+X$, or rather of its finite-dimensional formal models, is conjectured to be related to special values of local unramified $L$-functions. Such relationships were previously established in Braverman–Finkelberg–Gaitsgory–Mirković for the affine closure of the quotient of a reductive group by the unipotent radical of a parabolic, and in Bouthier–Ngô–Sakellaridis for toric varieties and $L$-monoids. In this paper, we compute this intersection complex for the large class of those spherical $G$-varieties whose dual group is equal to $\check G$, and the stalks of its nearby cycles on the horospherical degeneration of $X$. We formulate the answer in terms of a Kashiwara crystal, which conjecturally corresponds to a finite-dimensional $\check G$-representation determined by the set of $B$-invariant valuations on $X$. We prove the latter conjecture in many cases. Under the sheaf–function dictionary, our calculations give a formula for the Plancherel density of the IC function of $\mathsf L^+X$ as a ratio of local $L$-values for a large class of spherical varieties.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.