用Perron级数表示数的正规性质

IF 0.5 4区 数学 Q3 MATHEMATICS
Mykola Moroz
{"title":"用Perron级数表示数的正规性质","authors":"Mykola Moroz","doi":"10.1007/s11253-023-02246-y","DOIUrl":null,"url":null,"abstract":"<p>We study the representation of real numbers by Perron series (<i>P</i>-representation) given by\n</p><span>$$\\left(\\left.0;1\\right]\\ni x=\\sum_{n=0}^{\\infty }\\frac{{r}_{0}{r}_{1}\\dots {r}_{n}}{\\left({p}_{1}-1\\right){p}_{1}\\dots \\left({p}_{n}-1\\right){p}_{n}{p}_{n+1}}={\\Delta }_{{p}_{1}{p}_{2}\\dots }^{P}\\right.,$$</span><p>where <i>r</i><sub><i>n</i></sub>, <i>p</i><sub><i>n</i></sub> ∈ ℕ, <i>p</i><sub><i>n</i>+1</sub> ≥ <i>r</i><sub><i>n</i></sub> + 1, and its transcoding (<span>\\(\\overline{P }\\)</span>-representation)\n</p><span>$${x=\\Delta }_{{g}_{1}{g}_{2}\\dots }^{\\overline{P} },$$</span><p>where <i>g</i><sub><i>n</i></sub> = <i>p</i><sub><i>n</i></sub> − <i>r</i><sub><i>n−</i>1</sub><i>.</i> We establish the properties of <span>\\(\\overline{P }\\)</span>-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit <i>i</i> in the <span>\\(\\overline{P }\\)</span>-representation of a number <span>\\({x=\\Delta }_{{g}_{1}{g}_{2}\\dots {g}_{2}\\dots }^{\\overline{P} }\\)</span> defined by the equality\n</p><span>$${\\nu }_{i}^{\\overline{P} }\\left(x\\right)=\\underset{k\\to \\infty }{\\mathrm{lim}}\\frac{{N}_{i}^{\\overline{P} }\\left(x,k\\right)}{k},$$</span><p>where <span>\\({N}_{i}^{\\overline{P} }\\left(x,k\\right)\\)</span> denotes the amount of numbers <i>n</i> such that <i>g</i><sub><i>n</i></sub> = <i>i</i> and <i>n</i> ≤ <i>k.</i> In particular, we establish conditions under which the frequency <span>\\({\\nu }_{i}^{\\overline{P} }\\left(x\\right)\\)</span> exists and is constant for almost all <i>x</i> ∈ (0; 1]<i>.</i> In addition, we also determine the conditions under which the digits in <span>\\(\\overline{P }\\)</span>-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1]<i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal Properties of Numbers in Terms of their Representation by the Perron Series\",\"authors\":\"Mykola Moroz\",\"doi\":\"10.1007/s11253-023-02246-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the representation of real numbers by Perron series (<i>P</i>-representation) given by\\n</p><span>$$\\\\left(\\\\left.0;1\\\\right]\\\\ni x=\\\\sum_{n=0}^{\\\\infty }\\\\frac{{r}_{0}{r}_{1}\\\\dots {r}_{n}}{\\\\left({p}_{1}-1\\\\right){p}_{1}\\\\dots \\\\left({p}_{n}-1\\\\right){p}_{n}{p}_{n+1}}={\\\\Delta }_{{p}_{1}{p}_{2}\\\\dots }^{P}\\\\right.,$$</span><p>where <i>r</i><sub><i>n</i></sub>, <i>p</i><sub><i>n</i></sub> ∈ ℕ, <i>p</i><sub><i>n</i>+1</sub> ≥ <i>r</i><sub><i>n</i></sub> + 1, and its transcoding (<span>\\\\(\\\\overline{P }\\\\)</span>-representation)\\n</p><span>$${x=\\\\Delta }_{{g}_{1}{g}_{2}\\\\dots }^{\\\\overline{P} },$$</span><p>where <i>g</i><sub><i>n</i></sub> = <i>p</i><sub><i>n</i></sub> − <i>r</i><sub><i>n−</i>1</sub><i>.</i> We establish the properties of <span>\\\\(\\\\overline{P }\\\\)</span>-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit <i>i</i> in the <span>\\\\(\\\\overline{P }\\\\)</span>-representation of a number <span>\\\\({x=\\\\Delta }_{{g}_{1}{g}_{2}\\\\dots {g}_{2}\\\\dots }^{\\\\overline{P} }\\\\)</span> defined by the equality\\n</p><span>$${\\\\nu }_{i}^{\\\\overline{P} }\\\\left(x\\\\right)=\\\\underset{k\\\\to \\\\infty }{\\\\mathrm{lim}}\\\\frac{{N}_{i}^{\\\\overline{P} }\\\\left(x,k\\\\right)}{k},$$</span><p>where <span>\\\\({N}_{i}^{\\\\overline{P} }\\\\left(x,k\\\\right)\\\\)</span> denotes the amount of numbers <i>n</i> such that <i>g</i><sub><i>n</i></sub> = <i>i</i> and <i>n</i> ≤ <i>k.</i> In particular, we establish conditions under which the frequency <span>\\\\({\\\\nu }_{i}^{\\\\overline{P} }\\\\left(x\\\\right)\\\\)</span> exists and is constant for almost all <i>x</i> ∈ (0; 1]<i>.</i> In addition, we also determine the conditions under which the digits in <span>\\\\(\\\\overline{P }\\\\)</span>-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1]<i>.</i></p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02246-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02246-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用Perron级数(p -表示法)表示实数的方法$$\left(\left.0;1\right]\ni x=\sum_{n=0}^{\infty }\frac{{r}_{0}{r}_{1}\dots {r}_{n}}{\left({p}_{1}-1\right){p}_{1}\dots \left({p}_{n}-1\right){p}_{n}{p}_{n+1}}={\Delta }_{{p}_{1}{p}_{2}\dots }^{P}\right.,$$式中rn, pn∈n, pn+1≥rn +1,其转码(\(\overline{P }\)-代表)$${x=\Delta }_{{g}_{1}{g}_{2}\dots }^{\overline{P} },$$式中gn = pn−rn−1。我们建立的性质 \(\overline{P }\)-关于勒贝格测度的几乎所有数的典型表示(数表示的正常性质)。我们还检验了数字i的频率存在的条件 \(\overline{P }\)-数字的表示 \({x=\Delta }_{{g}_{1}{g}_{2}\dots {g}_{2}\dots }^{\overline{P} }\) 由等式定义$${\nu }_{i}^{\overline{P} }\left(x\right)=\underset{k\to \infty }{\mathrm{lim}}\frac{{N}_{i}^{\overline{P} }\left(x,k\right)}{k},$$在哪里 \({N}_{i}^{\overline{P} }\left(x,k\right)\) 表示满足gn = i且n≤k的数n的个数。特别地,我们建立了频率 \({\nu }_{i}^{\overline{P} }\left(x\right)\) 对于几乎所有x∈(0;1]。此外,我们还确定了在何种条件下的数字 \(\overline{P }\)-对于几乎所有从(0;1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal Properties of Numbers in Terms of their Representation by the Perron Series

We study the representation of real numbers by Perron series (P-representation) given by

$$\left(\left.0;1\right]\ni x=\sum_{n=0}^{\infty }\frac{{r}_{0}{r}_{1}\dots {r}_{n}}{\left({p}_{1}-1\right){p}_{1}\dots \left({p}_{n}-1\right){p}_{n}{p}_{n+1}}={\Delta }_{{p}_{1}{p}_{2}\dots }^{P}\right.,$$

where rn, pn ∈ ℕ, pn+1rn + 1, and its transcoding (\(\overline{P }\)-representation)

$${x=\Delta }_{{g}_{1}{g}_{2}\dots }^{\overline{P} },$$

where gn = pnrn−1. We establish the properties of \(\overline{P }\)-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit i in the \(\overline{P }\)-representation of a number \({x=\Delta }_{{g}_{1}{g}_{2}\dots {g}_{2}\dots }^{\overline{P} }\) defined by the equality

$${\nu }_{i}^{\overline{P} }\left(x\right)=\underset{k\to \infty }{\mathrm{lim}}\frac{{N}_{i}^{\overline{P} }\left(x,k\right)}{k},$$

where \({N}_{i}^{\overline{P} }\left(x,k\right)\) denotes the amount of numbers n such that gn = i and nk. In particular, we establish conditions under which the frequency \({\nu }_{i}^{\overline{P} }\left(x\right)\) exists and is constant for almost all x ∈ (0; 1]. In addition, we also determine the conditions under which the digits in \(\overline{P }\)-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信