{"title":"用Perron级数表示数的正规性质","authors":"Mykola Moroz","doi":"10.1007/s11253-023-02246-y","DOIUrl":null,"url":null,"abstract":"<p>We study the representation of real numbers by Perron series (<i>P</i>-representation) given by\n</p><span>$$\\left(\\left.0;1\\right]\\ni x=\\sum_{n=0}^{\\infty }\\frac{{r}_{0}{r}_{1}\\dots {r}_{n}}{\\left({p}_{1}-1\\right){p}_{1}\\dots \\left({p}_{n}-1\\right){p}_{n}{p}_{n+1}}={\\Delta }_{{p}_{1}{p}_{2}\\dots }^{P}\\right.,$$</span><p>where <i>r</i><sub><i>n</i></sub>, <i>p</i><sub><i>n</i></sub> ∈ ℕ, <i>p</i><sub><i>n</i>+1</sub> ≥ <i>r</i><sub><i>n</i></sub> + 1, and its transcoding (<span>\\(\\overline{P }\\)</span>-representation)\n</p><span>$${x=\\Delta }_{{g}_{1}{g}_{2}\\dots }^{\\overline{P} },$$</span><p>where <i>g</i><sub><i>n</i></sub> = <i>p</i><sub><i>n</i></sub> − <i>r</i><sub><i>n−</i>1</sub><i>.</i> We establish the properties of <span>\\(\\overline{P }\\)</span>-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit <i>i</i> in the <span>\\(\\overline{P }\\)</span>-representation of a number <span>\\({x=\\Delta }_{{g}_{1}{g}_{2}\\dots {g}_{2}\\dots }^{\\overline{P} }\\)</span> defined by the equality\n</p><span>$${\\nu }_{i}^{\\overline{P} }\\left(x\\right)=\\underset{k\\to \\infty }{\\mathrm{lim}}\\frac{{N}_{i}^{\\overline{P} }\\left(x,k\\right)}{k},$$</span><p>where <span>\\({N}_{i}^{\\overline{P} }\\left(x,k\\right)\\)</span> denotes the amount of numbers <i>n</i> such that <i>g</i><sub><i>n</i></sub> = <i>i</i> and <i>n</i> ≤ <i>k.</i> In particular, we establish conditions under which the frequency <span>\\({\\nu }_{i}^{\\overline{P} }\\left(x\\right)\\)</span> exists and is constant for almost all <i>x</i> ∈ (0; 1]<i>.</i> In addition, we also determine the conditions under which the digits in <span>\\(\\overline{P }\\)</span>-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1]<i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal Properties of Numbers in Terms of their Representation by the Perron Series\",\"authors\":\"Mykola Moroz\",\"doi\":\"10.1007/s11253-023-02246-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the representation of real numbers by Perron series (<i>P</i>-representation) given by\\n</p><span>$$\\\\left(\\\\left.0;1\\\\right]\\\\ni x=\\\\sum_{n=0}^{\\\\infty }\\\\frac{{r}_{0}{r}_{1}\\\\dots {r}_{n}}{\\\\left({p}_{1}-1\\\\right){p}_{1}\\\\dots \\\\left({p}_{n}-1\\\\right){p}_{n}{p}_{n+1}}={\\\\Delta }_{{p}_{1}{p}_{2}\\\\dots }^{P}\\\\right.,$$</span><p>where <i>r</i><sub><i>n</i></sub>, <i>p</i><sub><i>n</i></sub> ∈ ℕ, <i>p</i><sub><i>n</i>+1</sub> ≥ <i>r</i><sub><i>n</i></sub> + 1, and its transcoding (<span>\\\\(\\\\overline{P }\\\\)</span>-representation)\\n</p><span>$${x=\\\\Delta }_{{g}_{1}{g}_{2}\\\\dots }^{\\\\overline{P} },$$</span><p>where <i>g</i><sub><i>n</i></sub> = <i>p</i><sub><i>n</i></sub> − <i>r</i><sub><i>n−</i>1</sub><i>.</i> We establish the properties of <span>\\\\(\\\\overline{P }\\\\)</span>-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit <i>i</i> in the <span>\\\\(\\\\overline{P }\\\\)</span>-representation of a number <span>\\\\({x=\\\\Delta }_{{g}_{1}{g}_{2}\\\\dots {g}_{2}\\\\dots }^{\\\\overline{P} }\\\\)</span> defined by the equality\\n</p><span>$${\\\\nu }_{i}^{\\\\overline{P} }\\\\left(x\\\\right)=\\\\underset{k\\\\to \\\\infty }{\\\\mathrm{lim}}\\\\frac{{N}_{i}^{\\\\overline{P} }\\\\left(x,k\\\\right)}{k},$$</span><p>where <span>\\\\({N}_{i}^{\\\\overline{P} }\\\\left(x,k\\\\right)\\\\)</span> denotes the amount of numbers <i>n</i> such that <i>g</i><sub><i>n</i></sub> = <i>i</i> and <i>n</i> ≤ <i>k.</i> In particular, we establish conditions under which the frequency <span>\\\\({\\\\nu }_{i}^{\\\\overline{P} }\\\\left(x\\\\right)\\\\)</span> exists and is constant for almost all <i>x</i> ∈ (0; 1]<i>.</i> In addition, we also determine the conditions under which the digits in <span>\\\\(\\\\overline{P }\\\\)</span>-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1]<i>.</i></p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02246-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02246-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
where gn = pn − rn−1. We establish the properties of \(\overline{P }\)-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit i in the \(\overline{P }\)-representation of a number \({x=\Delta }_{{g}_{1}{g}_{2}\dots {g}_{2}\dots }^{\overline{P} }\) defined by the equality
where \({N}_{i}^{\overline{P} }\left(x,k\right)\) denotes the amount of numbers n such that gn = i and n ≤ k. In particular, we establish conditions under which the frequency \({\nu }_{i}^{\overline{P} }\left(x\right)\) exists and is constant for almost all x ∈ (0; 1]. In addition, we also determine the conditions under which the digits in \(\overline{P }\)-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1].
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.