{"title":"用Perron级数表示数的正规性质","authors":"Mykola Moroz","doi":"10.1007/s11253-023-02246-y","DOIUrl":null,"url":null,"abstract":"<p>We study the representation of real numbers by Perron series (<i>P</i>-representation) given by\n</p><span>$$\\left(\\left.0;1\\right]\\ni x=\\sum_{n=0}^{\\infty }\\frac{{r}_{0}{r}_{1}\\dots {r}_{n}}{\\left({p}_{1}-1\\right){p}_{1}\\dots \\left({p}_{n}-1\\right){p}_{n}{p}_{n+1}}={\\Delta }_{{p}_{1}{p}_{2}\\dots }^{P}\\right.,$$</span><p>where <i>r</i><sub><i>n</i></sub>, <i>p</i><sub><i>n</i></sub> ∈ ℕ, <i>p</i><sub><i>n</i>+1</sub> ≥ <i>r</i><sub><i>n</i></sub> + 1, and its transcoding (<span>\\(\\overline{P }\\)</span>-representation)\n</p><span>$${x=\\Delta }_{{g}_{1}{g}_{2}\\dots }^{\\overline{P} },$$</span><p>where <i>g</i><sub><i>n</i></sub> = <i>p</i><sub><i>n</i></sub> − <i>r</i><sub><i>n−</i>1</sub><i>.</i> We establish the properties of <span>\\(\\overline{P }\\)</span>-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit <i>i</i> in the <span>\\(\\overline{P }\\)</span>-representation of a number <span>\\({x=\\Delta }_{{g}_{1}{g}_{2}\\dots {g}_{2}\\dots }^{\\overline{P} }\\)</span> defined by the equality\n</p><span>$${\\nu }_{i}^{\\overline{P} }\\left(x\\right)=\\underset{k\\to \\infty }{\\mathrm{lim}}\\frac{{N}_{i}^{\\overline{P} }\\left(x,k\\right)}{k},$$</span><p>where <span>\\({N}_{i}^{\\overline{P} }\\left(x,k\\right)\\)</span> denotes the amount of numbers <i>n</i> such that <i>g</i><sub><i>n</i></sub> = <i>i</i> and <i>n</i> ≤ <i>k.</i> In particular, we establish conditions under which the frequency <span>\\({\\nu }_{i}^{\\overline{P} }\\left(x\\right)\\)</span> exists and is constant for almost all <i>x</i> ∈ (0; 1]<i>.</i> In addition, we also determine the conditions under which the digits in <span>\\(\\overline{P }\\)</span>-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1]<i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal Properties of Numbers in Terms of their Representation by the Perron Series\",\"authors\":\"Mykola Moroz\",\"doi\":\"10.1007/s11253-023-02246-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the representation of real numbers by Perron series (<i>P</i>-representation) given by\\n</p><span>$$\\\\left(\\\\left.0;1\\\\right]\\\\ni x=\\\\sum_{n=0}^{\\\\infty }\\\\frac{{r}_{0}{r}_{1}\\\\dots {r}_{n}}{\\\\left({p}_{1}-1\\\\right){p}_{1}\\\\dots \\\\left({p}_{n}-1\\\\right){p}_{n}{p}_{n+1}}={\\\\Delta }_{{p}_{1}{p}_{2}\\\\dots }^{P}\\\\right.,$$</span><p>where <i>r</i><sub><i>n</i></sub>, <i>p</i><sub><i>n</i></sub> ∈ ℕ, <i>p</i><sub><i>n</i>+1</sub> ≥ <i>r</i><sub><i>n</i></sub> + 1, and its transcoding (<span>\\\\(\\\\overline{P }\\\\)</span>-representation)\\n</p><span>$${x=\\\\Delta }_{{g}_{1}{g}_{2}\\\\dots }^{\\\\overline{P} },$$</span><p>where <i>g</i><sub><i>n</i></sub> = <i>p</i><sub><i>n</i></sub> − <i>r</i><sub><i>n−</i>1</sub><i>.</i> We establish the properties of <span>\\\\(\\\\overline{P }\\\\)</span>-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit <i>i</i> in the <span>\\\\(\\\\overline{P }\\\\)</span>-representation of a number <span>\\\\({x=\\\\Delta }_{{g}_{1}{g}_{2}\\\\dots {g}_{2}\\\\dots }^{\\\\overline{P} }\\\\)</span> defined by the equality\\n</p><span>$${\\\\nu }_{i}^{\\\\overline{P} }\\\\left(x\\\\right)=\\\\underset{k\\\\to \\\\infty }{\\\\mathrm{lim}}\\\\frac{{N}_{i}^{\\\\overline{P} }\\\\left(x,k\\\\right)}{k},$$</span><p>where <span>\\\\({N}_{i}^{\\\\overline{P} }\\\\left(x,k\\\\right)\\\\)</span> denotes the amount of numbers <i>n</i> such that <i>g</i><sub><i>n</i></sub> = <i>i</i> and <i>n</i> ≤ <i>k.</i> In particular, we establish conditions under which the frequency <span>\\\\({\\\\nu }_{i}^{\\\\overline{P} }\\\\left(x\\\\right)\\\\)</span> exists and is constant for almost all <i>x</i> ∈ (0; 1]<i>.</i> In addition, we also determine the conditions under which the digits in <span>\\\\(\\\\overline{P }\\\\)</span>-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1]<i>.</i></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02246-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02246-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
where gn = pn − rn−1. We establish the properties of \(\overline{P }\)-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit i in the \(\overline{P }\)-representation of a number \({x=\Delta }_{{g}_{1}{g}_{2}\dots {g}_{2}\dots }^{\overline{P} }\) defined by the equality
where \({N}_{i}^{\overline{P} }\left(x,k\right)\) denotes the amount of numbers n such that gn = i and n ≤ k. In particular, we establish conditions under which the frequency \({\nu }_{i}^{\overline{P} }\left(x\right)\) exists and is constant for almost all x ∈ (0; 1]. In addition, we also determine the conditions under which the digits in \(\overline{P }\)-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1].