{"title":"q-Hankel-Stockwell变换的不确定性原理","authors":"Kamel Brahim, Hédi Ben Elmonser","doi":"10.1007/s11253-023-02244-0","DOIUrl":null,"url":null,"abstract":"<p>By using the <i>q</i>-Jackson integral and some elements of the <i>q</i>-harmonic analysis associated with the <i>q</i>-Hankel transform, we introduce and study a <i>q</i>-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the <i>q</i>-Hankel–Stockwell transform on a subset of finite measure.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"10072 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Principles for the q-Hankel–Stockwell Transform\",\"authors\":\"Kamel Brahim, Hédi Ben Elmonser\",\"doi\":\"10.1007/s11253-023-02244-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By using the <i>q</i>-Jackson integral and some elements of the <i>q</i>-harmonic analysis associated with the <i>q</i>-Hankel transform, we introduce and study a <i>q</i>-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the <i>q</i>-Hankel–Stockwell transform on a subset of finite measure.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"10072 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02244-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02244-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uncertainty Principles for the q-Hankel–Stockwell Transform
By using the q-Jackson integral and some elements of the q-harmonic analysis associated with the q-Hankel transform, we introduce and study a q-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the q-Hankel–Stockwell transform on a subset of finite measure.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.