{"title":"q-Hankel-Stockwell变换的不确定性原理","authors":"Kamel Brahim, Hédi Ben Elmonser","doi":"10.1007/s11253-023-02244-0","DOIUrl":null,"url":null,"abstract":"<p>By using the <i>q</i>-Jackson integral and some elements of the <i>q</i>-harmonic analysis associated with the <i>q</i>-Hankel transform, we introduce and study a <i>q</i>-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the <i>q</i>-Hankel–Stockwell transform on a subset of finite measure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Principles for the q-Hankel–Stockwell Transform\",\"authors\":\"Kamel Brahim, Hédi Ben Elmonser\",\"doi\":\"10.1007/s11253-023-02244-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By using the <i>q</i>-Jackson integral and some elements of the <i>q</i>-harmonic analysis associated with the <i>q</i>-Hankel transform, we introduce and study a <i>q</i>-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the <i>q</i>-Hankel–Stockwell transform on a subset of finite measure.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02244-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02244-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty Principles for the q-Hankel–Stockwell Transform
By using the q-Jackson integral and some elements of the q-harmonic analysis associated with the q-Hankel transform, we introduce and study a q-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the q-Hankel–Stockwell transform on a subset of finite measure.