{"title":"用插值三角多项式逼近广义泊松积分","authors":"Anatolii Serdyuk, Tetyana Stepanyuk","doi":"10.1007/s11253-023-02248-w","DOIUrl":null,"url":null,"abstract":"<p>We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2<i>π</i>-periodic functions <i>f</i> that can be represented in the form of generalized Poisson integrals of functions <i>φ</i> from the space <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞<i>.</i> In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials <span>\\(\\left|f\\left(x\\right)-{\\widetilde{S}}_{n-1}\\left(f;x\\right)\\right|\\)</span> for every <i>x</i> ∈ ℝ are expressed via the best approximations <span>\\({E}_{n}{\\left(\\varphi \\right)}_{{L}_{p}}\\)</span> of the functions <i>φ</i> by trigonometric polynomials in the <i>L</i><sub><i>p</i></sub>-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞, by interpolating trigonometric polynomials on the classes <span>\\({C}_{\\beta ,p}^{\\alpha ,r}\\)</span>.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"48 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of Generalized Poisson Integrals by Interpolating Trigonometric Polynomials\",\"authors\":\"Anatolii Serdyuk, Tetyana Stepanyuk\",\"doi\":\"10.1007/s11253-023-02248-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2<i>π</i>-periodic functions <i>f</i> that can be represented in the form of generalized Poisson integrals of functions <i>φ</i> from the space <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞<i>.</i> In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials <span>\\\\(\\\\left|f\\\\left(x\\\\right)-{\\\\widetilde{S}}_{n-1}\\\\left(f;x\\\\right)\\\\right|\\\\)</span> for every <i>x</i> ∈ ℝ are expressed via the best approximations <span>\\\\({E}_{n}{\\\\left(\\\\varphi \\\\right)}_{{L}_{p}}\\\\)</span> of the functions <i>φ</i> by trigonometric polynomials in the <i>L</i><sub><i>p</i></sub>-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞, by interpolating trigonometric polynomials on the classes <span>\\\\({C}_{\\\\beta ,p}^{\\\\alpha ,r}\\\\)</span>.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02248-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02248-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximation of Generalized Poisson Integrals by Interpolating Trigonometric Polynomials
We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2π-periodic functions f that can be represented in the form of generalized Poisson integrals of functions φ from the space Lp, 1 ≤ p ≤ ∞. In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials \(\left|f\left(x\right)-{\widetilde{S}}_{n-1}\left(f;x\right)\right|\) for every x ∈ ℝ are expressed via the best approximations \({E}_{n}{\left(\varphi \right)}_{{L}_{p}}\) of the functions φ by trigonometric polynomials in the Lp-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces Lp, 1 ≤ p ≤ ∞, by interpolating trigonometric polynomials on the classes \({C}_{\beta ,p}^{\alpha ,r}\).
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.