{"title":"用插值三角多项式逼近广义泊松积分","authors":"Anatolii Serdyuk, Tetyana Stepanyuk","doi":"10.1007/s11253-023-02248-w","DOIUrl":null,"url":null,"abstract":"<p>We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2<i>π</i>-periodic functions <i>f</i> that can be represented in the form of generalized Poisson integrals of functions <i>φ</i> from the space <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞<i>.</i> In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials <span>\\(\\left|f\\left(x\\right)-{\\widetilde{S}}_{n-1}\\left(f;x\\right)\\right|\\)</span> for every <i>x</i> ∈ ℝ are expressed via the best approximations <span>\\({E}_{n}{\\left(\\varphi \\right)}_{{L}_{p}}\\)</span> of the functions <i>φ</i> by trigonometric polynomials in the <i>L</i><sub><i>p</i></sub>-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞, by interpolating trigonometric polynomials on the classes <span>\\({C}_{\\beta ,p}^{\\alpha ,r}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of Generalized Poisson Integrals by Interpolating Trigonometric Polynomials\",\"authors\":\"Anatolii Serdyuk, Tetyana Stepanyuk\",\"doi\":\"10.1007/s11253-023-02248-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2<i>π</i>-periodic functions <i>f</i> that can be represented in the form of generalized Poisson integrals of functions <i>φ</i> from the space <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞<i>.</i> In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials <span>\\\\(\\\\left|f\\\\left(x\\\\right)-{\\\\widetilde{S}}_{n-1}\\\\left(f;x\\\\right)\\\\right|\\\\)</span> for every <i>x</i> ∈ ℝ are expressed via the best approximations <span>\\\\({E}_{n}{\\\\left(\\\\varphi \\\\right)}_{{L}_{p}}\\\\)</span> of the functions <i>φ</i> by trigonometric polynomials in the <i>L</i><sub><i>p</i></sub>-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞, by interpolating trigonometric polynomials on the classes <span>\\\\({C}_{\\\\beta ,p}^{\\\\alpha ,r}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02248-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02248-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation of Generalized Poisson Integrals by Interpolating Trigonometric Polynomials
We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2π-periodic functions f that can be represented in the form of generalized Poisson integrals of functions φ from the space Lp, 1 ≤ p ≤ ∞. In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials \(\left|f\left(x\right)-{\widetilde{S}}_{n-1}\left(f;x\right)\right|\) for every x ∈ ℝ are expressed via the best approximations \({E}_{n}{\left(\varphi \right)}_{{L}_{p}}\) of the functions φ by trigonometric polynomials in the Lp-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces Lp, 1 ≤ p ≤ ∞, by interpolating trigonometric polynomials on the classes \({C}_{\beta ,p}^{\alpha ,r}\).