用插值三角多项式逼近广义泊松积分

IF 0.5 4区 数学 Q3 MATHEMATICS
Anatolii Serdyuk, Tetyana Stepanyuk
{"title":"用插值三角多项式逼近广义泊松积分","authors":"Anatolii Serdyuk, Tetyana Stepanyuk","doi":"10.1007/s11253-023-02248-w","DOIUrl":null,"url":null,"abstract":"<p>We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2<i>π</i>-periodic functions <i>f</i> that can be represented in the form of generalized Poisson integrals of functions <i>φ</i> from the space <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞<i>.</i> In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials <span>\\(\\left|f\\left(x\\right)-{\\widetilde{S}}_{n-1}\\left(f;x\\right)\\right|\\)</span> for every <i>x</i> ∈ ℝ are expressed via the best approximations <span>\\({E}_{n}{\\left(\\varphi \\right)}_{{L}_{p}}\\)</span> of the functions <i>φ</i> by trigonometric polynomials in the <i>L</i><sub><i>p</i></sub>-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞, by interpolating trigonometric polynomials on the classes <span>\\({C}_{\\beta ,p}^{\\alpha ,r}\\)</span>.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"48 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of Generalized Poisson Integrals by Interpolating Trigonometric Polynomials\",\"authors\":\"Anatolii Serdyuk, Tetyana Stepanyuk\",\"doi\":\"10.1007/s11253-023-02248-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2<i>π</i>-periodic functions <i>f</i> that can be represented in the form of generalized Poisson integrals of functions <i>φ</i> from the space <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞<i>.</i> In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials <span>\\\\(\\\\left|f\\\\left(x\\\\right)-{\\\\widetilde{S}}_{n-1}\\\\left(f;x\\\\right)\\\\right|\\\\)</span> for every <i>x</i> ∈ ℝ are expressed via the best approximations <span>\\\\({E}_{n}{\\\\left(\\\\varphi \\\\right)}_{{L}_{p}}\\\\)</span> of the functions <i>φ</i> by trigonometric polynomials in the <i>L</i><sub><i>p</i></sub>-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces <i>L</i><sub><i>p</i></sub>, 1 ≤ <i>p</i> ≤ ∞, by interpolating trigonometric polynomials on the classes <span>\\\\({C}_{\\\\beta ,p}^{\\\\alpha ,r}\\\\)</span>.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02248-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02248-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了2π周期函数f的渐近不可改进的lebesgue型不等式的插值类比,这些函数f可以在空间Lp, 1≤p≤∞上用函数φ的广义泊松积分的形式表示。在这些不等式中,对于每个x∈∈,插值拉格朗日多项式\(\left|f\left(x\right)-{\widetilde{S}}_{n-1}\left(f;x\right)\right|\)的偏差模是通过在lp -度量中三角多项式对函数φ的最佳近似\({E}_{n}{\left(\varphi \right)}_{{L}_{p}}\)来表示的。通过插值类\({C}_{\beta ,p}^{\alpha ,r}\)上的三角多项式,我们还推导出了空间Lp, 1≤p≤∞上属于单位球的函数的广义泊松积分的点逼近的精确上界的渐近等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of Generalized Poisson Integrals by Interpolating Trigonometric Polynomials

We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities for 2π-periodic functions f that can be represented in the form of generalized Poisson integrals of functions φ from the space Lp, 1 ≤ p ≤ ∞. In these inequalities, the moduli of deviations of the interpolation Lagrange polynomials \(\left|f\left(x\right)-{\widetilde{S}}_{n-1}\left(f;x\right)\right|\) for every x ∈ ℝ are expressed via the best approximations \({E}_{n}{\left(\varphi \right)}_{{L}_{p}}\) of the functions φ by trigonometric polynomials in the Lp-metrics. We also deduce asymptotic equalities for the exact upper bounds of pointwise approximations of the generalized Poisson integrals of functions that belong to the unit balls in the spaces Lp, 1 ≤ p ≤ ∞, by interpolating trigonometric polynomials on the classes \({C}_{\beta ,p}^{\alpha ,r}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信