具有Riemann-Liouville导数的分数阶Schrödinger方程的时变源识别问题

IF 0.5 4区 数学 Q3 MATHEMATICS
Ravshan Ashurov, Marjona Shakarova
{"title":"具有Riemann-Liouville导数的分数阶Schrödinger方程的时变源识别问题","authors":"Ravshan Ashurov, Marjona Shakarova","doi":"10.1007/s11253-023-02243-1","DOIUrl":null,"url":null,"abstract":"<p>We consider a Schrödinger equation <span>\\(i{\\partial }_{t}^{\\rho }u\\left(x,t\\right)-{u}_{xx}\\left(x,t\\right)=p\\left(t\\right)q\\left(x\\right)+f\\left(x,t\\right),0&lt;t\\le T,0&lt;\\rho &lt;1,\\)</span> with the Riemann–Liouville derivative. An inverse problem is investigated in which, parallel with <i>u</i>(<i>x, t</i>)<i>,</i> a time-dependent factor <i>p</i>(<i>t</i>) of the source function is also unknown. To solve this inverse problem, we use an additional condition <i>B</i>[<i>u</i>(<i>∙, t</i>)] =<i>ψ</i>(<i>t</i>) with an arbitrary bounded linear functional <i>B.</i> The existence and uniqueness theorem for the solution to the problem under consideration is proved. The stability inequalities are obtained. The applied method makes it possible to study a similar problem by taking, instead of <i>d</i><sup>2</sup><i>/dx</i><sup>2</sup><i>,</i> an arbitrary elliptic differential operator <i>A</i>(<i>x,D</i>) with compact inverse.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Time-Dependent Source Identification Problem for a Fractional Schrödinger Equationwith the Riemann–Liouville Derivative\",\"authors\":\"Ravshan Ashurov, Marjona Shakarova\",\"doi\":\"10.1007/s11253-023-02243-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a Schrödinger equation <span>\\\\(i{\\\\partial }_{t}^{\\\\rho }u\\\\left(x,t\\\\right)-{u}_{xx}\\\\left(x,t\\\\right)=p\\\\left(t\\\\right)q\\\\left(x\\\\right)+f\\\\left(x,t\\\\right),0&lt;t\\\\le T,0&lt;\\\\rho &lt;1,\\\\)</span> with the Riemann–Liouville derivative. An inverse problem is investigated in which, parallel with <i>u</i>(<i>x, t</i>)<i>,</i> a time-dependent factor <i>p</i>(<i>t</i>) of the source function is also unknown. To solve this inverse problem, we use an additional condition <i>B</i>[<i>u</i>(<i>∙, t</i>)] =<i>ψ</i>(<i>t</i>) with an arbitrary bounded linear functional <i>B.</i> The existence and uniqueness theorem for the solution to the problem under consideration is proved. The stability inequalities are obtained. The applied method makes it possible to study a similar problem by taking, instead of <i>d</i><sup>2</sup><i>/dx</i><sup>2</sup><i>,</i> an arbitrary elliptic differential operator <i>A</i>(<i>x,D</i>) with compact inverse.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02243-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02243-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑一个具有黎曼-刘维尔导数的Schrödinger方程\(i{\partial }_{t}^{\rho }u\left(x,t\right)-{u}_{xx}\left(x,t\right)=p\left(t\right)q\left(x\right)+f\left(x,t\right),0<t\le T,0<\rho <1,\)。研究了一个反问题,其中与u(x, t)并行,源函数的时间相关因子p(t)也是未知的。为了解决这个反问题,我们用一个附加条件B[u(∙,t)] =ψ(t)与一个任意有界线性泛函B,证明了该问题解的存在唯一性定理。得到了稳定性不等式。应用的方法使得用一个紧逆的任意椭圆微分算子a (x,D)代替d2/dx2来研究类似的问题成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Dependent Source Identification Problem for a Fractional Schrödinger Equationwith the Riemann–Liouville Derivative

We consider a Schrödinger equation \(i{\partial }_{t}^{\rho }u\left(x,t\right)-{u}_{xx}\left(x,t\right)=p\left(t\right)q\left(x\right)+f\left(x,t\right),0<t\le T,0<\rho <1,\) with the Riemann–Liouville derivative. An inverse problem is investigated in which, parallel with u(x, t), a time-dependent factor p(t) of the source function is also unknown. To solve this inverse problem, we use an additional condition B[u(∙, t)] =ψ(t) with an arbitrary bounded linear functional B. The existence and uniqueness theorem for the solution to the problem under consideration is proved. The stability inequalities are obtained. The applied method makes it possible to study a similar problem by taking, instead of d2/dx2, an arbitrary elliptic differential operator A(x,D) with compact inverse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信