{"title":"具有Riemann-Liouville导数的分数阶Schrödinger方程的时变源识别问题","authors":"Ravshan Ashurov, Marjona Shakarova","doi":"10.1007/s11253-023-02243-1","DOIUrl":null,"url":null,"abstract":"<p>We consider a Schrödinger equation <span>\\(i{\\partial }_{t}^{\\rho }u\\left(x,t\\right)-{u}_{xx}\\left(x,t\\right)=p\\left(t\\right)q\\left(x\\right)+f\\left(x,t\\right),0<t\\le T,0<\\rho <1,\\)</span> with the Riemann–Liouville derivative. An inverse problem is investigated in which, parallel with <i>u</i>(<i>x, t</i>)<i>,</i> a time-dependent factor <i>p</i>(<i>t</i>) of the source function is also unknown. To solve this inverse problem, we use an additional condition <i>B</i>[<i>u</i>(<i>∙, t</i>)] =<i>ψ</i>(<i>t</i>) with an arbitrary bounded linear functional <i>B.</i> The existence and uniqueness theorem for the solution to the problem under consideration is proved. The stability inequalities are obtained. The applied method makes it possible to study a similar problem by taking, instead of <i>d</i><sup>2</sup><i>/dx</i><sup>2</sup><i>,</i> an arbitrary elliptic differential operator <i>A</i>(<i>x,D</i>) with compact inverse.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Time-Dependent Source Identification Problem for a Fractional Schrödinger Equationwith the Riemann–Liouville Derivative\",\"authors\":\"Ravshan Ashurov, Marjona Shakarova\",\"doi\":\"10.1007/s11253-023-02243-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a Schrödinger equation <span>\\\\(i{\\\\partial }_{t}^{\\\\rho }u\\\\left(x,t\\\\right)-{u}_{xx}\\\\left(x,t\\\\right)=p\\\\left(t\\\\right)q\\\\left(x\\\\right)+f\\\\left(x,t\\\\right),0<t\\\\le T,0<\\\\rho <1,\\\\)</span> with the Riemann–Liouville derivative. An inverse problem is investigated in which, parallel with <i>u</i>(<i>x, t</i>)<i>,</i> a time-dependent factor <i>p</i>(<i>t</i>) of the source function is also unknown. To solve this inverse problem, we use an additional condition <i>B</i>[<i>u</i>(<i>∙, t</i>)] =<i>ψ</i>(<i>t</i>) with an arbitrary bounded linear functional <i>B.</i> The existence and uniqueness theorem for the solution to the problem under consideration is proved. The stability inequalities are obtained. The applied method makes it possible to study a similar problem by taking, instead of <i>d</i><sup>2</sup><i>/dx</i><sup>2</sup><i>,</i> an arbitrary elliptic differential operator <i>A</i>(<i>x,D</i>) with compact inverse.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02243-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02243-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Time-Dependent Source Identification Problem for a Fractional Schrödinger Equationwith the Riemann–Liouville Derivative
We consider a Schrödinger equation \(i{\partial }_{t}^{\rho }u\left(x,t\right)-{u}_{xx}\left(x,t\right)=p\left(t\right)q\left(x\right)+f\left(x,t\right),0<t\le T,0<\rho <1,\) with the Riemann–Liouville derivative. An inverse problem is investigated in which, parallel with u(x, t), a time-dependent factor p(t) of the source function is also unknown. To solve this inverse problem, we use an additional condition B[u(∙, t)] =ψ(t) with an arbitrary bounded linear functional B. The existence and uniqueness theorem for the solution to the problem under consideration is proved. The stability inequalities are obtained. The applied method makes it possible to study a similar problem by taking, instead of d2/dx2, an arbitrary elliptic differential operator A(x,D) with compact inverse.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.