{"title":"局部一元解析函数的一元准则","authors":"Zhenyong Hu, Jinhua Fan, Xiaoyuan Wang","doi":"10.1007/s11253-023-02250-2","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <i>p</i>(<i>z</i>) = 1 + <i>zϕ″</i>(<i>z</i>)<i>/ϕ′</i>(<i>z</i>), where <i>ϕ</i>(<i>z</i>) is a locally univalent analytic function in the unit disk <b>D</b> with <i>ϕ</i>(0) = <i>ϕ′</i>(1) <i>−</i> 1 = 0<i>.</i> We establish the lower and upper bounds for the best constants <i>σ</i><sub>0</sub> and <i>σ</i><sub>1</sub> such that <span>\\({e}^{{-\\sigma }_{0}/2}<\\left|p\\left(z\\right)\\right|<{e}^{{\\sigma }_{0}/2}\\)</span> and |<i>p</i>(<i>w</i>)/<i>p</i>(<i>z</i>)| < <span>\\({e}^{{\\sigma }_{1}}\\)</span> for <i>z</i>, <i>w</i> ∈ <b>D</b>, respectively, imply the univalence of <i>ϕ</i>(<i>z</i>) in <b>D.</b></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Univalence Criteria for Locally Univalent Analytic Functions\",\"authors\":\"Zhenyong Hu, Jinhua Fan, Xiaoyuan Wang\",\"doi\":\"10.1007/s11253-023-02250-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <i>p</i>(<i>z</i>) = 1 + <i>zϕ″</i>(<i>z</i>)<i>/ϕ′</i>(<i>z</i>), where <i>ϕ</i>(<i>z</i>) is a locally univalent analytic function in the unit disk <b>D</b> with <i>ϕ</i>(0) = <i>ϕ′</i>(1) <i>−</i> 1 = 0<i>.</i> We establish the lower and upper bounds for the best constants <i>σ</i><sub>0</sub> and <i>σ</i><sub>1</sub> such that <span>\\\\({e}^{{-\\\\sigma }_{0}/2}<\\\\left|p\\\\left(z\\\\right)\\\\right|<{e}^{{\\\\sigma }_{0}/2}\\\\)</span> and |<i>p</i>(<i>w</i>)/<i>p</i>(<i>z</i>)| < <span>\\\\({e}^{{\\\\sigma }_{1}}\\\\)</span> for <i>z</i>, <i>w</i> ∈ <b>D</b>, respectively, imply the univalence of <i>ϕ</i>(<i>z</i>) in <b>D.</b></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02250-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02250-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Univalence Criteria for Locally Univalent Analytic Functions
Suppose that p(z) = 1 + zϕ″(z)/ϕ′(z), where ϕ(z) is a locally univalent analytic function in the unit disk D with ϕ(0) = ϕ′(1) − 1 = 0. We establish the lower and upper bounds for the best constants σ0 and σ1 such that \({e}^{{-\sigma }_{0}/2}<\left|p\left(z\right)\right|<{e}^{{\sigma }_{0}/2}\) and |p(w)/p(z)| < \({e}^{{\sigma }_{1}}\) for z, w ∈ D, respectively, imply the univalence of ϕ(z) in D.