Javad Mashreghi, Pierre-Olivier Parisé, Thomas Ransford
{"title":"de Branges-Rovnyak空间中的幂级数可和性方法","authors":"Javad Mashreghi, Pierre-Olivier Parisé, Thomas Ransford","doi":"10.1007/s00020-022-02698-0","DOIUrl":null,"url":null,"abstract":"<p>We show that there exists a de Branges–Rovnyak space <span>\\({\\mathcal {H}}(b)\\)</span> on the unit disk containing a function <i>f</i> with the following property: even though <i>f</i> can be approximated by polynomials in <span>\\({\\mathcal {H}}(b)\\)</span>, neither the Taylor partial sums of <i>f</i> nor their Cesàro, Abel, Borel or logarithmic means converge to <i>f</i> in <span>\\({\\mathcal {H}}(b)\\)</span>. A key tool is a new abstract result showing that, if one regular summability method includes another for scalar sequences, then it automatically does so for certain Banach-space-valued sequences too.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power-Series Summability Methods in de Branges–Rovnyak Spaces\",\"authors\":\"Javad Mashreghi, Pierre-Olivier Parisé, Thomas Ransford\",\"doi\":\"10.1007/s00020-022-02698-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that there exists a de Branges–Rovnyak space <span>\\\\({\\\\mathcal {H}}(b)\\\\)</span> on the unit disk containing a function <i>f</i> with the following property: even though <i>f</i> can be approximated by polynomials in <span>\\\\({\\\\mathcal {H}}(b)\\\\)</span>, neither the Taylor partial sums of <i>f</i> nor their Cesàro, Abel, Borel or logarithmic means converge to <i>f</i> in <span>\\\\({\\\\mathcal {H}}(b)\\\\)</span>. A key tool is a new abstract result showing that, if one regular summability method includes another for scalar sequences, then it automatically does so for certain Banach-space-valued sequences too.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-022-02698-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-022-02698-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-Series Summability Methods in de Branges–Rovnyak Spaces
We show that there exists a de Branges–Rovnyak space \({\mathcal {H}}(b)\) on the unit disk containing a function f with the following property: even though f can be approximated by polynomials in \({\mathcal {H}}(b)\), neither the Taylor partial sums of f nor their Cesàro, Abel, Borel or logarithmic means converge to f in \({\mathcal {H}}(b)\). A key tool is a new abstract result showing that, if one regular summability method includes another for scalar sequences, then it automatically does so for certain Banach-space-valued sequences too.