{"title":"不确定环境中的最小实现和决定表示","authors":"Joshua D. Jackson, Hugo J. Woerdeman","doi":"10.1007/s00020-022-02697-1","DOIUrl":null,"url":null,"abstract":"<p>For a signature matrix <i>J</i>, we show that a rational matrix function <i>M</i>(<i>z</i>) that is strictly <i>J</i>-contractive on the unit circle <span>\\({{\\mathbb {T}}}\\)</span>, has a strict <span>\\({\\tilde{J}}\\oplus J\\)</span>-contractive realization <span>\\(\\begin{bmatrix} A &{} B \\\\ C &{} D \\end{bmatrix}\\)</span> for an appropriate signature matrix <span>\\({\\tilde{J}}\\)</span>; that is, <span>\\( M(z) = D +zC (I -zA)^{-1} B \\)</span>. As an application, we use this result to show that a two variable polynomial <span>\\(p(z_1,z_2)\\)</span> of degree <span>\\((n_1,n_2)\\)</span>, <span>\\(n_2=1\\)</span>, without roots on <span>\\(\\{ (0,0) \\} \\cup ({{\\mathbb {T}}} \\times \\{ 0 \\} ) \\cup {{\\mathbb {T}}}^2\\)</span> allows a determinantal representation </p><span>$$\\begin{aligned} p(z_1, z_2) = p(0,0) \\det (I_{n_1+1} - K Z), \\ \\ Z = z_1 I_{n_1} \\oplus z_2 I_{n_2} , \\end{aligned}$$</span>(1)<p>where <i>K</i> is a strict <span>\\({\\tilde{J}}\\oplus J\\)</span>-contraction. This provides first evidence of a new conjecture that a two variable polynomial <span>\\(p(z_1,z_2)\\)</span> of degree <span>\\((n_1,n_2)\\)</span> has a determinantal representation (1) with <i>K</i> a strict <span>\\({\\tilde{J}}\\oplus J\\)</span>-contraction if and only if <span>\\(p(z_1,z_2)\\)</span> has no roots in <span>\\(\\{ (0,0) \\} \\cup {{\\mathbb {T}}}^2\\)</span>.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"72 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal Realizations and Determinantal Representations in the Indefinite Setting\",\"authors\":\"Joshua D. Jackson, Hugo J. Woerdeman\",\"doi\":\"10.1007/s00020-022-02697-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a signature matrix <i>J</i>, we show that a rational matrix function <i>M</i>(<i>z</i>) that is strictly <i>J</i>-contractive on the unit circle <span>\\\\({{\\\\mathbb {T}}}\\\\)</span>, has a strict <span>\\\\({\\\\tilde{J}}\\\\oplus J\\\\)</span>-contractive realization <span>\\\\(\\\\begin{bmatrix} A &{} B \\\\\\\\ C &{} D \\\\end{bmatrix}\\\\)</span> for an appropriate signature matrix <span>\\\\({\\\\tilde{J}}\\\\)</span>; that is, <span>\\\\( M(z) = D +zC (I -zA)^{-1} B \\\\)</span>. As an application, we use this result to show that a two variable polynomial <span>\\\\(p(z_1,z_2)\\\\)</span> of degree <span>\\\\((n_1,n_2)\\\\)</span>, <span>\\\\(n_2=1\\\\)</span>, without roots on <span>\\\\(\\\\{ (0,0) \\\\} \\\\cup ({{\\\\mathbb {T}}} \\\\times \\\\{ 0 \\\\} ) \\\\cup {{\\\\mathbb {T}}}^2\\\\)</span> allows a determinantal representation </p><span>$$\\\\begin{aligned} p(z_1, z_2) = p(0,0) \\\\det (I_{n_1+1} - K Z), \\\\ \\\\ Z = z_1 I_{n_1} \\\\oplus z_2 I_{n_2} , \\\\end{aligned}$$</span>(1)<p>where <i>K</i> is a strict <span>\\\\({\\\\tilde{J}}\\\\oplus J\\\\)</span>-contraction. This provides first evidence of a new conjecture that a two variable polynomial <span>\\\\(p(z_1,z_2)\\\\)</span> of degree <span>\\\\((n_1,n_2)\\\\)</span> has a determinantal representation (1) with <i>K</i> a strict <span>\\\\({\\\\tilde{J}}\\\\oplus J\\\\)</span>-contraction if and only if <span>\\\\(p(z_1,z_2)\\\\)</span> has no roots in <span>\\\\(\\\\{ (0,0) \\\\} \\\\cup {{\\\\mathbb {T}}}^2\\\\)</span>.</p>\",\"PeriodicalId\":13658,\"journal\":{\"name\":\"Integral Equations and Operator Theory\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Equations and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-022-02697-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-022-02697-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
对于一个签名矩阵J,我们证明了一个在单位圆\({{\mathbb {T}}}\)上严格J压缩的有理矩阵函数M(z)对于一个合适的签名矩阵\({\tilde{J}}\)具有严格\({\tilde{J}}\oplus J\) -压缩实现\(\begin{bmatrix} A &{} B \\ C &{} D \end{bmatrix}\);也就是\( M(z) = D +zC (I -zA)^{-1} B \)。作为一个应用,我们用这个结果来证明一个二阶多项式\(p(z_1,z_2)\)的次为\((n_1,n_2)\), \(n_2=1\),在\(\{ (0,0) \} \cup ({{\mathbb {T}}} \times \{ 0 \} ) \cup {{\mathbb {T}}}^2\)上没有根允许一个行列式表示$$\begin{aligned} p(z_1, z_2) = p(0,0) \det (I_{n_1+1} - K Z), \ \ Z = z_1 I_{n_1} \oplus z_2 I_{n_2} , \end{aligned}$$(1),其中K是一个严格的\({\tilde{J}}\oplus J\) -收缩。这提供了一个新猜想的第一个证据,即次为\((n_1,n_2)\)的两个变量多项式\(p(z_1,z_2)\)具有行列式表示(1),其中K是严格的\({\tilde{J}}\oplus J\) -收缩,当且仅当\(p(z_1,z_2)\)在\(\{ (0,0) \} \cup {{\mathbb {T}}}^2\)中没有根。
Minimal Realizations and Determinantal Representations in the Indefinite Setting
For a signature matrix J, we show that a rational matrix function M(z) that is strictly J-contractive on the unit circle \({{\mathbb {T}}}\), has a strict \({\tilde{J}}\oplus J\)-contractive realization \(\begin{bmatrix} A &{} B \\ C &{} D \end{bmatrix}\) for an appropriate signature matrix \({\tilde{J}}\); that is, \( M(z) = D +zC (I -zA)^{-1} B \). As an application, we use this result to show that a two variable polynomial \(p(z_1,z_2)\) of degree \((n_1,n_2)\), \(n_2=1\), without roots on \(\{ (0,0) \} \cup ({{\mathbb {T}}} \times \{ 0 \} ) \cup {{\mathbb {T}}}^2\) allows a determinantal representation
where K is a strict \({\tilde{J}}\oplus J\)-contraction. This provides first evidence of a new conjecture that a two variable polynomial \(p(z_1,z_2)\) of degree \((n_1,n_2)\) has a determinantal representation (1) with K a strict \({\tilde{J}}\oplus J\)-contraction if and only if \(p(z_1,z_2)\) has no roots in \(\{ (0,0) \} \cup {{\mathbb {T}}}^2\).
期刊介绍:
Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.