{"title":"图上的源检测","authors":"Tobias Weber, Volker Kaibel, Sebastian Sager","doi":"10.1007/s11081-023-09869-x","DOIUrl":null,"url":null,"abstract":"<p>Spreading processes on networks (graphs) have become ubiquitous in modern society with prominent examples such as infections, rumors, excitations, contaminations, or disturbances. Finding the source of such processes based on observations is important and difficult. We abstract the problem mathematically as an optimization problem on graphs. For the deterministic setting we make connections to the metric dimension of a graph and introduce the concept of spread resolving sets. For the stochastic setting we propose a new algorithm combining parameter estimation and experimental design. We discuss well-posedness of the algorithm and show encouraging numerical results on a benchmark library.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"295 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source detection on graphs\",\"authors\":\"Tobias Weber, Volker Kaibel, Sebastian Sager\",\"doi\":\"10.1007/s11081-023-09869-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spreading processes on networks (graphs) have become ubiquitous in modern society with prominent examples such as infections, rumors, excitations, contaminations, or disturbances. Finding the source of such processes based on observations is important and difficult. We abstract the problem mathematically as an optimization problem on graphs. For the deterministic setting we make connections to the metric dimension of a graph and introduce the concept of spread resolving sets. For the stochastic setting we propose a new algorithm combining parameter estimation and experimental design. We discuss well-posedness of the algorithm and show encouraging numerical results on a benchmark library.</p>\",\"PeriodicalId\":56141,\"journal\":{\"name\":\"Optimization and Engineering\",\"volume\":\"295 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-023-09869-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09869-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Spreading processes on networks (graphs) have become ubiquitous in modern society with prominent examples such as infections, rumors, excitations, contaminations, or disturbances. Finding the source of such processes based on observations is important and difficult. We abstract the problem mathematically as an optimization problem on graphs. For the deterministic setting we make connections to the metric dimension of a graph and introduce the concept of spread resolving sets. For the stochastic setting we propose a new algorithm combining parameter estimation and experimental design. We discuss well-posedness of the algorithm and show encouraging numerical results on a benchmark library.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.