长短期记忆人工神经网络(LSTM)经济临近预测

IF 0.5 4区 数学 Q4 SOCIAL SCIENCES, MATHEMATICAL METHODS
Daniel Hopp
{"title":"长短期记忆人工神经网络(LSTM)经济临近预测","authors":"Daniel Hopp","doi":"10.2478/jos-2022-0037","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANNs) have been the catalyst to numerous advances in a variety of fields and disciplines in recent years. Their impact on economics, however, has been comparatively muted. One type of ANN, the long short-term memory network (LSTM), is particularly well-suited to deal with economic time-series. Here, the architecture’s performance and characteristics are evaluated in comparison with the dynamic factor model (DFM), currently a popular choice in the field of economic nowcasting. LSTMs are found to produce superior results to DFMs in the nowcasting of three separate variables; global merchandise export values and volumes, and global services exports. Further advantages include their ability to handle large numbers of input features in a variety of time frequencies. A disadvantage is the stochastic nature of outputs, common to all ANNs. In order to facilitate continued applied research of the methodology by avoiding the need for any knowledge of deep-learning libraries, an accompanying Python (Hopp 2021a) library was developed using PyTorch. The library is also available in R, MATLAB, and Julia.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)\",\"authors\":\"Daniel Hopp\",\"doi\":\"10.2478/jos-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks (ANNs) have been the catalyst to numerous advances in a variety of fields and disciplines in recent years. Their impact on economics, however, has been comparatively muted. One type of ANN, the long short-term memory network (LSTM), is particularly well-suited to deal with economic time-series. Here, the architecture’s performance and characteristics are evaluated in comparison with the dynamic factor model (DFM), currently a popular choice in the field of economic nowcasting. LSTMs are found to produce superior results to DFMs in the nowcasting of three separate variables; global merchandise export values and volumes, and global services exports. Further advantages include their ability to handle large numbers of input features in a variety of time frequencies. A disadvantage is the stochastic nature of outputs, common to all ANNs. In order to facilitate continued applied research of the methodology by avoiding the need for any knowledge of deep-learning libraries, an accompanying Python (Hopp 2021a) library was developed using PyTorch. The library is also available in R, MATLAB, and Julia.\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2022-0037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2022-0037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工神经网络(ann)已经成为各个领域和学科取得众多进展的催化剂。然而,它们对经济的影响相对较小。其中一种人工神经网络,长短期记忆网络(LSTM),特别适合处理经济时间序列。本文将该体系结构的性能和特点与动态因子模型(DFM)进行了比较,动态因子模型是目前经济临近预报领域的一种流行选择。在三个独立变量的临近预报中,lstm的结果优于dfm;全球商品出口总值和出口量,以及全球服务出口。进一步的优点包括它们能够在各种时间频率下处理大量输入特征。缺点是输出的随机性,这是所有人工神经网络的共同特点。为了通过避免需要任何深度学习库的知识来促进该方法的持续应用研究,使用PyTorch开发了附带的Python (Hopp 2021a)库。该库也可以在R、MATLAB和Julia中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)
Artificial neural networks (ANNs) have been the catalyst to numerous advances in a variety of fields and disciplines in recent years. Their impact on economics, however, has been comparatively muted. One type of ANN, the long short-term memory network (LSTM), is particularly well-suited to deal with economic time-series. Here, the architecture’s performance and characteristics are evaluated in comparison with the dynamic factor model (DFM), currently a popular choice in the field of economic nowcasting. LSTMs are found to produce superior results to DFMs in the nowcasting of three separate variables; global merchandise export values and volumes, and global services exports. Further advantages include their ability to handle large numbers of input features in a variety of time frequencies. A disadvantage is the stochastic nature of outputs, common to all ANNs. In order to facilitate continued applied research of the methodology by avoiding the need for any knowledge of deep-learning libraries, an accompanying Python (Hopp 2021a) library was developed using PyTorch. The library is also available in R, MATLAB, and Julia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Official Statistics
Journal of Official Statistics STATISTICS & PROBABILITY-
CiteScore
1.90
自引率
9.10%
发文量
39
审稿时长
>12 weeks
期刊介绍: JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信