端点临界triiebel - lizorkin空间中不可压缩欧拉方程解的时间正则性 $$F^{d+1}_{1, \infty }(\mathbb {R}^d)$$

IF 1.1 3区 数学 Q1 MATHEMATICS
Hee Chul Pak
{"title":"端点临界triiebel - lizorkin空间中不可压缩欧拉方程解的时间正则性 $$F^{d+1}_{1, \\infty }(\\mathbb {R}^d)$$","authors":"Hee Chul Pak","doi":"10.1007/s00028-023-00927-6","DOIUrl":null,"url":null,"abstract":"<p>An evidence of temporal discontinuity of the solution in <span>\\(F^s_{1, \\infty }(\\mathbb {R}^d)\\)</span> is presented, which implies the ill-posedness of the Cauchy problem for the Euler equations. Continuity and weak-type continuity of the solutions in related spaces are also discussed.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal regularity of the solution to the incompressible Euler equations in the end-point critical Triebel–Lizorkin space $$F^{d+1}_{1, \\\\infty }(\\\\mathbb {R}^d)$$\",\"authors\":\"Hee Chul Pak\",\"doi\":\"10.1007/s00028-023-00927-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An evidence of temporal discontinuity of the solution in <span>\\\\(F^s_{1, \\\\infty }(\\\\mathbb {R}^d)\\\\)</span> is presented, which implies the ill-posedness of the Cauchy problem for the Euler equations. Continuity and weak-type continuity of the solutions in related spaces are also discussed.\\n</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00927-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00927-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了\(F^s_{1, \infty }(\mathbb {R}^d)\)中解的时间不连续的证据,这暗示了欧拉方程的柯西问题的不适定性。讨论了相关空间中解的连续性和弱型连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temporal regularity of the solution to the incompressible Euler equations in the end-point critical Triebel–Lizorkin space $$F^{d+1}_{1, \infty }(\mathbb {R}^d)$$

Temporal regularity of the solution to the incompressible Euler equations in the end-point critical Triebel–Lizorkin space $$F^{d+1}_{1, \infty }(\mathbb {R}^d)$$

An evidence of temporal discontinuity of the solution in \(F^s_{1, \infty }(\mathbb {R}^d)\) is presented, which implies the ill-posedness of the Cauchy problem for the Euler equations. Continuity and weak-type continuity of the solutions in related spaces are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信