混合数据核加权样条分位数回归的折刀模型平均

Pub Date : 2023-11-28 DOI:10.1007/s00184-023-00932-2
Xianwen Sun, Lixin Zhang
{"title":"混合数据核加权样条分位数回归的折刀模型平均","authors":"Xianwen Sun, Lixin Zhang","doi":"10.1007/s00184-023-00932-2","DOIUrl":null,"url":null,"abstract":"<p>In the past two decades, model averaging has attracted more and more attention and is regarded as a much better tool to solve model uncertainty than model selection. Compared with the conditional mean regression, the quantile regression serves as a robust alternative and shows a lot more information about the conditional distribution of a response variable. In this paper, we propose a jackknife model averaging procedure that chooses the weights by minimizing a leave-one-out cross-validation criterion function for mixed-data kernel-weighted spline quantile regressions that contain both continuous and categorical regressors when all candidate models are potentially misspecified. We demonstrate the JMA estimator is asymptotically optimal in terms of minimizing the out-of-sample final prediction error. Simulation experiments are conducted to assess the relative finite-sample performance of the proposed JMA method with respect to other model selection and averaging methods. Our JMA method is applied to the wage and house datasets.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jackknife model averaging for mixed-data kernel-weighted spline quantile regressions\",\"authors\":\"Xianwen Sun, Lixin Zhang\",\"doi\":\"10.1007/s00184-023-00932-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the past two decades, model averaging has attracted more and more attention and is regarded as a much better tool to solve model uncertainty than model selection. Compared with the conditional mean regression, the quantile regression serves as a robust alternative and shows a lot more information about the conditional distribution of a response variable. In this paper, we propose a jackknife model averaging procedure that chooses the weights by minimizing a leave-one-out cross-validation criterion function for mixed-data kernel-weighted spline quantile regressions that contain both continuous and categorical regressors when all candidate models are potentially misspecified. We demonstrate the JMA estimator is asymptotically optimal in terms of minimizing the out-of-sample final prediction error. Simulation experiments are conducted to assess the relative finite-sample performance of the proposed JMA method with respect to other model selection and averaging methods. Our JMA method is applied to the wage and house datasets.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00932-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00932-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,模型平均越来越受到人们的关注,并被认为是一种比模型选择更好的解决模型不确定性的工具。与条件均值回归相比,分位数回归是一种鲁棒的替代方法,可以显示更多关于响应变量条件分布的信息。在本文中,我们提出了一个折刀模型平均过程,该过程通过最小化包含连续和分类回归的混合数据核加权样条分位数回归的留一交叉验证准则函数来选择权重,当所有候选模型都可能被错误指定时。我们证明了JMA估计器在最小化样本外最终预测误差方面是渐近最优的。通过仿真实验来评估JMA方法相对于其他模型选择和平均方法的有限样本性能。我们的JMA方法应用于工资和住房数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Jackknife model averaging for mixed-data kernel-weighted spline quantile regressions

分享
查看原文
Jackknife model averaging for mixed-data kernel-weighted spline quantile regressions

In the past two decades, model averaging has attracted more and more attention and is regarded as a much better tool to solve model uncertainty than model selection. Compared with the conditional mean regression, the quantile regression serves as a robust alternative and shows a lot more information about the conditional distribution of a response variable. In this paper, we propose a jackknife model averaging procedure that chooses the weights by minimizing a leave-one-out cross-validation criterion function for mixed-data kernel-weighted spline quantile regressions that contain both continuous and categorical regressors when all candidate models are potentially misspecified. We demonstrate the JMA estimator is asymptotically optimal in terms of minimizing the out-of-sample final prediction error. Simulation experiments are conducted to assess the relative finite-sample performance of the proposed JMA method with respect to other model selection and averaging methods. Our JMA method is applied to the wage and house datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信