Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli
{"title":"累积信息生成函数与广义基尼函数","authors":"Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli","doi":"10.1007/s00184-023-00931-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of <i>k</i>-out-of-<i>n</i> systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.\n</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"129 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cumulative information generating function and generalized Gini functions\",\"authors\":\"Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli\",\"doi\":\"10.1007/s00184-023-00931-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of <i>k</i>-out-of-<i>n</i> systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.\\n</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"129 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00931-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00931-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Cumulative information generating function and generalized Gini functions
We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of k-out-of-n systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.