累积信息生成函数与广义基尼函数

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2023-11-27 DOI:10.1007/s00184-023-00931-3
Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli
{"title":"累积信息生成函数与广义基尼函数","authors":"Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli","doi":"10.1007/s00184-023-00931-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of <i>k</i>-out-of-<i>n</i> systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.\n</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"129 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cumulative information generating function and generalized Gini functions\",\"authors\":\"Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli\",\"doi\":\"10.1007/s00184-023-00931-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of <i>k</i>-out-of-<i>n</i> systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.\\n</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"129 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00931-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00931-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在累积分布函数和生存函数的基础上,引入并研究了累积信息生成函数,为处理经典熵和分数熵提供了一种统一的数学工具。具体来说,在确定了它的主要性质和一些界限之后,我们表明它是一个可变性测量本身,它扩展了基尼平均半差。我们还提供(i)基于失真函数的这种度量的扩展,以及(ii)基于混合分布的加权版本。此外,我们探讨了与k- of-n系统的可靠性和多部件系统的应力-强度模型的一些联系。此外,我们还解决了将累积信息生成函数扩展到更高维度的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cumulative information generating function and generalized Gini functions

Cumulative information generating function and generalized Gini functions

We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of k-out-of-n systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信