具有局部感知和消耗的趋化性模型的长期空间同质性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Philippe Laurençot
{"title":"具有局部感知和消耗的趋化性模型的长期空间同质性","authors":"Philippe Laurençot","doi":"10.4310/cms.2023.v21.n6.a14","DOIUrl":null,"url":null,"abstract":"Global weak solutions to a chemotaxis model with local sensing and consumption are shown to converge to spatially homogeneous steady states in the large time limit, when the motility is assumed to be positive and $C^1$-smooth on $[0,\\infty)$. The result is valid in arbitrary space dimension $n \\geq1$ and extends a previous result which only deals with space dimensions $n \\in {\\lbrace 1,2,3 \\rbrace}$.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"1226 ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Long term spatial homogeneity for a chemotaxis model with local sensing and consumption\",\"authors\":\"Philippe Laurençot\",\"doi\":\"10.4310/cms.2023.v21.n6.a14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global weak solutions to a chemotaxis model with local sensing and consumption are shown to converge to spatially homogeneous steady states in the large time limit, when the motility is assumed to be positive and $C^1$-smooth on $[0,\\\\infty)$. The result is valid in arbitrary space dimension $n \\\\geq1$ and extends a previous result which only deals with space dimensions $n \\\\in {\\\\lbrace 1,2,3 \\\\rbrace}$.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"1226 \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2023.v21.n6.a14\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2023.v21.n6.a14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

具有局部感知和消耗的趋化性模型的全局弱解在大时间限制下收敛到空间均匀稳态,当运动假设为正且$[0,\infty)$上$C^1$ -光滑时。该结果适用于任意空间维度$n \geq1$,并扩展了先前仅处理空间维度$n \in {\lbrace 1,2,3 \rbrace}$的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long term spatial homogeneity for a chemotaxis model with local sensing and consumption
Global weak solutions to a chemotaxis model with local sensing and consumption are shown to converge to spatially homogeneous steady states in the large time limit, when the motility is assumed to be positive and $C^1$-smooth on $[0,\infty)$. The result is valid in arbitrary space dimension $n \geq1$ and extends a previous result which only deals with space dimensions $n \in {\lbrace 1,2,3 \rbrace}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信