一种新型清洁加热复合相变储能材料性能的实验研究

IF 1.8 4区 材料科学 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Qunli Zhang, Tao Liu, Baozhong Wang, Xuanrui Cheng, Wenjing Zhang, Xiaohu Yang
{"title":"一种新型清洁加热复合相变储能材料性能的实验研究","authors":"Qunli Zhang, Tao Liu, Baozhong Wang, Xuanrui Cheng, Wenjing Zhang, Xiaohu Yang","doi":"10.1680/jgrma.23.00028","DOIUrl":null,"url":null,"abstract":"To achieve green and clean energy heating, improve the performance of phase change material energy storage heating systems (PCMEHS), a novel magnesium chloride hexahydrate/expanded graphite/calcium hydroxide composite phase change material (CPCM) was developed. The thermal properties and phase separation characteristics of the CPCM were experimentally characterized. The results show that MgCl<sub>2·</sub>6H<sub>2</sub>O/EG CPCM composed of 7.5% EG has good thermal storage performance without affecting the phase change performance. On this basis, the nucleating agent calcium hydroxide was added to further eliminate the supercooling of the material. The thermophysical properties of the ternary CPCM were tested, and the samples were characterized and analyzed from the microstructure. The thermal conductivity of the ternary CPCM is 2.825 W·m<sup>−1</sup>·K<sup>−1</sup>, about 4.66 times that of pure MgCl<sub>2</sub>·6H<sub>2</sub>O (0.606 W·m<sup>−1</sup>·K<sup>−1</sup>), and the supercooling is 0°C. The results of these thermal characteristics show that MgCl<sub>2</sub>·6H<sub>2</sub>O/EG/Ca(OH)<sub>2</sub> CPCM has great application potential in clean and green energy heating system.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the performance of a novel composite phase change energy storage material for clean heating\",\"authors\":\"Qunli Zhang, Tao Liu, Baozhong Wang, Xuanrui Cheng, Wenjing Zhang, Xiaohu Yang\",\"doi\":\"10.1680/jgrma.23.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve green and clean energy heating, improve the performance of phase change material energy storage heating systems (PCMEHS), a novel magnesium chloride hexahydrate/expanded graphite/calcium hydroxide composite phase change material (CPCM) was developed. The thermal properties and phase separation characteristics of the CPCM were experimentally characterized. The results show that MgCl<sub>2·</sub>6H<sub>2</sub>O/EG CPCM composed of 7.5% EG has good thermal storage performance without affecting the phase change performance. On this basis, the nucleating agent calcium hydroxide was added to further eliminate the supercooling of the material. The thermophysical properties of the ternary CPCM were tested, and the samples were characterized and analyzed from the microstructure. The thermal conductivity of the ternary CPCM is 2.825 W·m<sup>−1</sup>·K<sup>−1</sup>, about 4.66 times that of pure MgCl<sub>2</sub>·6H<sub>2</sub>O (0.606 W·m<sup>−1</sup>·K<sup>−1</sup>), and the supercooling is 0°C. The results of these thermal characteristics show that MgCl<sub>2</sub>·6H<sub>2</sub>O/EG/Ca(OH)<sub>2</sub> CPCM has great application potential in clean and green energy heating system.\",\"PeriodicalId\":12929,\"journal\":{\"name\":\"Green Materials\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jgrma.23.00028\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jgrma.23.00028","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为实现绿色清洁能源供热,提高相变材料储能供热系统(PCMEHS)的性能,研制了一种新型六水氯化镁/膨胀石墨/氢氧化钙复合相变材料(CPCM)。实验表征了CPCM的热性能和相分离特性。结果表明,7.5% EG组成的MgCl2·6H2O/EG CPCM具有良好的储热性能,且不影响相变性能。在此基础上,加入成核剂氢氧化钙,进一步消除材料过冷现象。测试了三元CPCM的热物理性能,并从微观结构上对样品进行了表征和分析。三元CPCM的导热系数为2.825 W·m−1·K−1,是纯MgCl2·6H2O (0.606 W·m−1·K−1)的4.66倍,过冷温度为0℃。这些热特性结果表明,MgCl2·6H2O/EG/Ca(OH)2 CPCM在清洁和绿色能源供暖系统中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on the performance of a novel composite phase change energy storage material for clean heating
To achieve green and clean energy heating, improve the performance of phase change material energy storage heating systems (PCMEHS), a novel magnesium chloride hexahydrate/expanded graphite/calcium hydroxide composite phase change material (CPCM) was developed. The thermal properties and phase separation characteristics of the CPCM were experimentally characterized. The results show that MgCl6H2O/EG CPCM composed of 7.5% EG has good thermal storage performance without affecting the phase change performance. On this basis, the nucleating agent calcium hydroxide was added to further eliminate the supercooling of the material. The thermophysical properties of the ternary CPCM were tested, and the samples were characterized and analyzed from the microstructure. The thermal conductivity of the ternary CPCM is 2.825 W·m−1·K−1, about 4.66 times that of pure MgCl2·6H2O (0.606 W·m−1·K−1), and the supercooling is 0°C. The results of these thermal characteristics show that MgCl2·6H2O/EG/Ca(OH)2 CPCM has great application potential in clean and green energy heating system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Materials
Green Materials Environmental Science-Pollution
CiteScore
3.50
自引率
15.80%
发文量
24
期刊介绍: The focus of Green Materials relates to polymers and materials, with an emphasis on reducing the use of hazardous substances in the design, manufacture and application of products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信