城市轨道交通短期客流预测的时间序列分解与强化学习集成方法

IF 1.7 4区 工程技术 Q4 TRANSPORTATION
Jinxin Wu, Deqiang He, Xianwang Li, Suiqiu He, Qin Li, Chonghui Ren
{"title":"城市轨道交通短期客流预测的时间序列分解与强化学习集成方法","authors":"Jinxin Wu, Deqiang He, Xianwang Li, Suiqiu He, Qin Li, Chonghui Ren","doi":"10.1007/s40864-023-00205-1","DOIUrl":null,"url":null,"abstract":"<p>Short-term passenger flow prediction (STPFP) helps ease traffic congestion and optimize the allocation of rail transit resources. However, the nonlinear and nonstationary nature of passenger flow time series challenges STPFP. To address this issue, a hybrid model based on time series decomposition and reinforcement learning ensemble strategies is proposed. Firstly, the improved arithmetic optimization algorithm is constructed by adding sine chaotic mapping, a new dynamic boundary strategy, and adaptive T distribution mutations for optimizing variational mode decomposition (VMD) parameters. Then, the original passenger flow data containing nonlinear and nonstationary irregular changes of noise is decomposed into several intrinsic mode functions (IMFs) by using the optimized VMD technology, which reduces the time-varying complexity of passenger flow time series and improves predictability. Meanwhile, the IMFs are divided into different frequency series by fluctuation-based dispersion entropy, and diverse models are utilized to predict different frequency series. Finally, to avoid the cumulative error caused by the direct superposition of each IMF’s prediction result, reinforcement learning is adopted to ensemble the multiple models to acquire the multistep passenger flow prediction result. Experiments on four subway station passenger flow datasets proved that the prediction performance of the proposed method was better than all benchmark models. The excellent prediction effect of the proposed model has important guiding significance for evaluating the operation status of urban rail transit systems and improving the level of passenger service.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Time Series Decomposition and Reinforcement Learning Ensemble Method for Short-Term Passenger Flow Prediction in Urban Rail Transit\",\"authors\":\"Jinxin Wu, Deqiang He, Xianwang Li, Suiqiu He, Qin Li, Chonghui Ren\",\"doi\":\"10.1007/s40864-023-00205-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Short-term passenger flow prediction (STPFP) helps ease traffic congestion and optimize the allocation of rail transit resources. However, the nonlinear and nonstationary nature of passenger flow time series challenges STPFP. To address this issue, a hybrid model based on time series decomposition and reinforcement learning ensemble strategies is proposed. Firstly, the improved arithmetic optimization algorithm is constructed by adding sine chaotic mapping, a new dynamic boundary strategy, and adaptive T distribution mutations for optimizing variational mode decomposition (VMD) parameters. Then, the original passenger flow data containing nonlinear and nonstationary irregular changes of noise is decomposed into several intrinsic mode functions (IMFs) by using the optimized VMD technology, which reduces the time-varying complexity of passenger flow time series and improves predictability. Meanwhile, the IMFs are divided into different frequency series by fluctuation-based dispersion entropy, and diverse models are utilized to predict different frequency series. Finally, to avoid the cumulative error caused by the direct superposition of each IMF’s prediction result, reinforcement learning is adopted to ensemble the multiple models to acquire the multistep passenger flow prediction result. Experiments on four subway station passenger flow datasets proved that the prediction performance of the proposed method was better than all benchmark models. The excellent prediction effect of the proposed model has important guiding significance for evaluating the operation status of urban rail transit systems and improving the level of passenger service.</p>\",\"PeriodicalId\":44861,\"journal\":{\"name\":\"Urban Rail Transit\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Rail Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40864-023-00205-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-023-00205-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

短期客流预测(STPFP)有助于缓解交通拥堵,优化轨道交通资源配置。然而,客流时间序列的非线性和非平稳性给STPFP提出了挑战。为了解决这一问题,提出了一种基于时间序列分解和强化学习集成策略的混合模型。首先,通过加入正弦混沌映射、新的动态边界策略和自适应T分布突变来优化变分模态分解(VMD)参数,构建改进的算法优化算法;然后,利用优化后的VMD技术,将包含非线性非平稳不规则噪声变化的原始客流数据分解为多个本征模态函数(IMFs),降低了客流时间序列的时变复杂度,提高了可预测性。同时,利用基于波动的频散熵将IMFs划分为不同的频率序列,利用不同的模型对不同的频率序列进行预测。最后,为避免各IMF预测结果直接叠加造成的累积误差,采用强化学习对多个模型进行集成,得到多步客流预测结果。在4个地铁站客流数据集上的实验证明,该方法的预测性能优于所有基准模型。该模型具有良好的预测效果,对评价城市轨道交通系统运行状况,提高客运服务水平具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Time Series Decomposition and Reinforcement Learning Ensemble Method for Short-Term Passenger Flow Prediction in Urban Rail Transit

A Time Series Decomposition and Reinforcement Learning Ensemble Method for Short-Term Passenger Flow Prediction in Urban Rail Transit

Short-term passenger flow prediction (STPFP) helps ease traffic congestion and optimize the allocation of rail transit resources. However, the nonlinear and nonstationary nature of passenger flow time series challenges STPFP. To address this issue, a hybrid model based on time series decomposition and reinforcement learning ensemble strategies is proposed. Firstly, the improved arithmetic optimization algorithm is constructed by adding sine chaotic mapping, a new dynamic boundary strategy, and adaptive T distribution mutations for optimizing variational mode decomposition (VMD) parameters. Then, the original passenger flow data containing nonlinear and nonstationary irregular changes of noise is decomposed into several intrinsic mode functions (IMFs) by using the optimized VMD technology, which reduces the time-varying complexity of passenger flow time series and improves predictability. Meanwhile, the IMFs are divided into different frequency series by fluctuation-based dispersion entropy, and diverse models are utilized to predict different frequency series. Finally, to avoid the cumulative error caused by the direct superposition of each IMF’s prediction result, reinforcement learning is adopted to ensemble the multiple models to acquire the multistep passenger flow prediction result. Experiments on four subway station passenger flow datasets proved that the prediction performance of the proposed method was better than all benchmark models. The excellent prediction effect of the proposed model has important guiding significance for evaluating the operation status of urban rail transit systems and improving the level of passenger service.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Rail Transit
Urban Rail Transit Multiple-
CiteScore
3.10
自引率
6.70%
发文量
20
审稿时长
5 weeks
期刊介绍: Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field. Specific topics cover: Column I: Urban Rail Transportation Operation and Management • urban rail transit flow theory, operation, planning, control and management • traffic and transport safety • traffic polices and economics • urban rail management • traffic information management • urban rail scheduling • train scheduling and management • strategies of ticket price • traffic information engineering & control • intelligent transportation system (ITS) and information technology • economics, finance, business & industry • train operation, control • transport Industries • transportation engineering Column II: Urban Rail Transportation Design and Planning • urban rail planning • pedestrian studies • sustainable transport engineering • rail electrification • rail signaling and communication • Intelligent & Automated Transport System Technology ? • rolling stock design theory and structural reliability • urban rail transit electrification and automation technologies • transport Industries • transportation engineering Column III: Civil Engineering • civil engineering technologies • maintenance of rail infrastructure • transportation infrastructure systems • roads, bridges, tunnels, and underground engineering ? • subgrade and pavement maintenance and performance Column IV: Equipments and Systems • mechanical-electronic technologies • manufacturing engineering • inspection for trains and rail • vehicle-track coupling system dynamics, simulation and control • superconductivity and levitation technology • magnetic suspension and evacuated tube transport • railway technology & engineering • Railway Transport Industries • transport & vehicle engineering Column V: other topics of interest • modern tram • interdisciplinary transportation research • environmental impacts such as vibration, noise and pollution Article types: • Papers. Reports of original research work. • Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems. • Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication. • Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信