用几何图解重新表述量子不确定关系

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS
Hao Xu, Mengjie Shi, Shuijing Li
{"title":"用几何图解重新表述量子不确定关系","authors":"Hao Xu, Mengjie Shi, Shuijing Li","doi":"10.1155/2023/6703001","DOIUrl":null,"url":null,"abstract":"The uncertainty principle stands as a fundamental tenet within the realm of quantum theory. In this study, we embark on a reexamination of an emerging variant of the uncertainty relation within both pure and mixed quantum systems, leveraging a geometric elucidation. Subsequently, an enhancement to this relation is achieved by the incorporation of a surface angle denoted as <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.59789 9.49473\" width=\"6.59789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> thereby transforming it from an inequality into an equation. Notably, this surface angle encapsulates the dynamics inherent in quantum state transitions. Complementing our analysis, a series of calculations are conducted, yielding results that offer an intuitive elucidation of the uncertainty relation across distinct quantum states. Consequently, this method bears significance as a pivotal visual insight within the domain of quantum information and measurement.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reformulating the Quantum Uncertainty Relation through Geometric Illustrations\",\"authors\":\"Hao Xu, Mengjie Shi, Shuijing Li\",\"doi\":\"10.1155/2023/6703001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uncertainty principle stands as a fundamental tenet within the realm of quantum theory. In this study, we embark on a reexamination of an emerging variant of the uncertainty relation within both pure and mixed quantum systems, leveraging a geometric elucidation. Subsequently, an enhancement to this relation is achieved by the incorporation of a surface angle denoted as <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 6.59789 9.49473\\\" width=\\\"6.59789pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>,</span> thereby transforming it from an inequality into an equation. Notably, this surface angle encapsulates the dynamics inherent in quantum state transitions. Complementing our analysis, a series of calculations are conducted, yielding results that offer an intuitive elucidation of the uncertainty relation across distinct quantum states. Consequently, this method bears significance as a pivotal visual insight within the domain of quantum information and measurement.\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6703001\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/6703001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

测不准原理是量子论领域的一个基本原则。在这项研究中,我们着手重新审视纯量子系统和混合量子系统中不确定性关系的新变体,利用几何解释。随后,通过将表面角度表示为,从而将其从不等式转化为方程,从而增强了这种关系。值得注意的是,这个表面角度封装了量子态转换中固有的动力学。补充我们的分析,进行了一系列的计算,产生的结果提供了跨不同量子态的不确定性关系的直观说明。因此,该方法在量子信息和测量领域具有重要的视觉洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reformulating the Quantum Uncertainty Relation through Geometric Illustrations
The uncertainty principle stands as a fundamental tenet within the realm of quantum theory. In this study, we embark on a reexamination of an emerging variant of the uncertainty relation within both pure and mixed quantum systems, leveraging a geometric elucidation. Subsequently, an enhancement to this relation is achieved by the incorporation of a surface angle denoted as , thereby transforming it from an inequality into an equation. Notably, this surface angle encapsulates the dynamics inherent in quantum state transitions. Complementing our analysis, a series of calculations are conducted, yielding results that offer an intuitive elucidation of the uncertainty relation across distinct quantum states. Consequently, this method bears significance as a pivotal visual insight within the domain of quantum information and measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信