{"title":"基于声发射的小波辅助深度学习损伤定位","authors":"Barbosh, Mohamed, Dunphy, Kyle, Sadhu, Ayan","doi":"10.1186/s43065-022-00051-8","DOIUrl":null,"url":null,"abstract":"Acoustic Emission (AE) has emerged as a popular damage detection and localization tool due to its high performance in identifying minor damage or crack. Due to the high sampling rate, AE sensors result in massive data during long-term monitoring of large-scale civil structures. Analyzing such big data and associated AE parameters (e.g., rise time, amplitude, counts, etc.) becomes time-consuming using traditional feature extraction methods. This paper proposes a 2D convolutional neural network (2D CNN)-based Artificial Intelligence (AI) algorithm combined with time–frequency decomposition techniques to extract the damage information from the measured AE data without using standalone AE parameters. In this paper, Empirical Mode Decomposition (EMD) is employed to extract the intrinsic mode functions (IMFs) from noisy raw AE measurements, where the IMFs serve as the key AE components of the data. Continuous Wavelet Transform (CWT) is then used to obtain the spectrograms of the AE components, serving as the “artificial images” to an AI network. These spectrograms are fed into 2D CNN algorithm to detect and identify the potential location of the damage. The proposed approach is validated using a suite of numerical and experimental studies.","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"22 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Acoustic emission-based damage localization using wavelet-assisted deep learning\",\"authors\":\"Barbosh, Mohamed, Dunphy, Kyle, Sadhu, Ayan\",\"doi\":\"10.1186/s43065-022-00051-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic Emission (AE) has emerged as a popular damage detection and localization tool due to its high performance in identifying minor damage or crack. Due to the high sampling rate, AE sensors result in massive data during long-term monitoring of large-scale civil structures. Analyzing such big data and associated AE parameters (e.g., rise time, amplitude, counts, etc.) becomes time-consuming using traditional feature extraction methods. This paper proposes a 2D convolutional neural network (2D CNN)-based Artificial Intelligence (AI) algorithm combined with time–frequency decomposition techniques to extract the damage information from the measured AE data without using standalone AE parameters. In this paper, Empirical Mode Decomposition (EMD) is employed to extract the intrinsic mode functions (IMFs) from noisy raw AE measurements, where the IMFs serve as the key AE components of the data. Continuous Wavelet Transform (CWT) is then used to obtain the spectrograms of the AE components, serving as the “artificial images” to an AI network. These spectrograms are fed into 2D CNN algorithm to detect and identify the potential location of the damage. The proposed approach is validated using a suite of numerical and experimental studies.\",\"PeriodicalId\":73793,\"journal\":{\"name\":\"Journal of infrastructure preservation and resilience\",\"volume\":\"22 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of infrastructure preservation and resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43065-022-00051-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43065-022-00051-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acoustic emission-based damage localization using wavelet-assisted deep learning
Acoustic Emission (AE) has emerged as a popular damage detection and localization tool due to its high performance in identifying minor damage or crack. Due to the high sampling rate, AE sensors result in massive data during long-term monitoring of large-scale civil structures. Analyzing such big data and associated AE parameters (e.g., rise time, amplitude, counts, etc.) becomes time-consuming using traditional feature extraction methods. This paper proposes a 2D convolutional neural network (2D CNN)-based Artificial Intelligence (AI) algorithm combined with time–frequency decomposition techniques to extract the damage information from the measured AE data without using standalone AE parameters. In this paper, Empirical Mode Decomposition (EMD) is employed to extract the intrinsic mode functions (IMFs) from noisy raw AE measurements, where the IMFs serve as the key AE components of the data. Continuous Wavelet Transform (CWT) is then used to obtain the spectrograms of the AE components, serving as the “artificial images” to an AI network. These spectrograms are fed into 2D CNN algorithm to detect and identify the potential location of the damage. The proposed approach is validated using a suite of numerical and experimental studies.