任意域上拟正则铅笔的有界秩摄动

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Marija Dodig, Marko Stošić
{"title":"任意域上拟正则铅笔的有界秩摄动","authors":"Marija Dodig, Marko Stošić","doi":"10.1137/22m1504068","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 44, Issue 4, Page 1879-1907, December 2023. <br/> Abstract. We solve the open problem of describing the possible Kronecker invariants of quasi-regular matrix pencils under bounded rank perturbations. By a quasi-regular matrix pencil we mean the full (normal) rank matrix pencil. The solution is explicit and constructive, and it is valid over arbitrary fields.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bounded Rank Perturbations of Quasi-Regular Pencils Over Arbitrary Fields\",\"authors\":\"Marija Dodig, Marko Stošić\",\"doi\":\"10.1137/22m1504068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 44, Issue 4, Page 1879-1907, December 2023. <br/> Abstract. We solve the open problem of describing the possible Kronecker invariants of quasi-regular matrix pencils under bounded rank perturbations. By a quasi-regular matrix pencil we mean the full (normal) rank matrix pencil. The solution is explicit and constructive, and it is valid over arbitrary fields.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1504068\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1504068","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

SIAM矩阵分析与应用杂志,第44卷,第4期,1879-1907页,2023年12月。摘要。我们解决了在有界秩扰动下拟正则矩阵铅笔可能的Kronecker不变量的描述问题。我们所说的拟正则矩阵铅笔是指满(正规)秩矩阵铅笔。该解具有显式和构造性,在任意域上都有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded Rank Perturbations of Quasi-Regular Pencils Over Arbitrary Fields
SIAM Journal on Matrix Analysis and Applications, Volume 44, Issue 4, Page 1879-1907, December 2023.
Abstract. We solve the open problem of describing the possible Kronecker invariants of quasi-regular matrix pencils under bounded rank perturbations. By a quasi-regular matrix pencil we mean the full (normal) rank matrix pencil. The solution is explicit and constructive, and it is valid over arbitrary fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信