Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein
{"title":"连续随机梯度法:第一部分收敛理论","authors":"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein","doi":"10.1007/s10589-023-00542-8","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, we present a full overview of the <i>continuous stochastic gradient</i> (CSG) method, including convergence results, step size rules and algorithmic insights. We consider optimization problems in which the objective function requires some form of integration, e.g., expected values. Since approximating the integration by a fixed quadrature rule can introduce artificial local solutions into the problem while simultaneously raising the computational effort, stochastic optimization schemes have become increasingly popular in such contexts. However, known stochastic gradient type methods are typically limited to expected risk functions and inherently require many iterations. The latter is particularly problematic, if the evaluation of the cost function involves solving multiple state equations, given, e.g., in form of partial differential equations. To overcome these drawbacks, a recent article introduced the CSG method, which reuses old gradient sample information via the calculation of design dependent integration weights to obtain a better approximation to the full gradient. While in the original CSG paper convergence of a subsequence was established for a diminishing step size, here, we provide a complete convergence analysis of CSG for constant step sizes and an Armijo-type line search. Moreover, new methods to obtain the integration weights are presented, extending the application range of CSG to problems involving higher dimensional integrals and distributed data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The continuous stochastic gradient method: part I–convergence theory\",\"authors\":\"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein\",\"doi\":\"10.1007/s10589-023-00542-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this contribution, we present a full overview of the <i>continuous stochastic gradient</i> (CSG) method, including convergence results, step size rules and algorithmic insights. We consider optimization problems in which the objective function requires some form of integration, e.g., expected values. Since approximating the integration by a fixed quadrature rule can introduce artificial local solutions into the problem while simultaneously raising the computational effort, stochastic optimization schemes have become increasingly popular in such contexts. However, known stochastic gradient type methods are typically limited to expected risk functions and inherently require many iterations. The latter is particularly problematic, if the evaluation of the cost function involves solving multiple state equations, given, e.g., in form of partial differential equations. To overcome these drawbacks, a recent article introduced the CSG method, which reuses old gradient sample information via the calculation of design dependent integration weights to obtain a better approximation to the full gradient. While in the original CSG paper convergence of a subsequence was established for a diminishing step size, here, we provide a complete convergence analysis of CSG for constant step sizes and an Armijo-type line search. Moreover, new methods to obtain the integration weights are presented, extending the application range of CSG to problems involving higher dimensional integrals and distributed data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00542-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00542-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The continuous stochastic gradient method: part I–convergence theory
In this contribution, we present a full overview of the continuous stochastic gradient (CSG) method, including convergence results, step size rules and algorithmic insights. We consider optimization problems in which the objective function requires some form of integration, e.g., expected values. Since approximating the integration by a fixed quadrature rule can introduce artificial local solutions into the problem while simultaneously raising the computational effort, stochastic optimization schemes have become increasingly popular in such contexts. However, known stochastic gradient type methods are typically limited to expected risk functions and inherently require many iterations. The latter is particularly problematic, if the evaluation of the cost function involves solving multiple state equations, given, e.g., in form of partial differential equations. To overcome these drawbacks, a recent article introduced the CSG method, which reuses old gradient sample information via the calculation of design dependent integration weights to obtain a better approximation to the full gradient. While in the original CSG paper convergence of a subsequence was established for a diminishing step size, here, we provide a complete convergence analysis of CSG for constant step sizes and an Armijo-type line search. Moreover, new methods to obtain the integration weights are presented, extending the application range of CSG to problems involving higher dimensional integrals and distributed data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.