Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein
{"title":"连续随机梯度法:第二部分-应用与数值","authors":"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein","doi":"10.1007/s10589-023-00540-w","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, we present a numerical analysis of the <i>continuous stochastic gradient</i> (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables <i>and</i> an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.\n</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"62 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The continuous stochastic gradient method: part II–application and numerics\",\"authors\":\"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein\",\"doi\":\"10.1007/s10589-023-00540-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this contribution, we present a numerical analysis of the <i>continuous stochastic gradient</i> (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables <i>and</i> an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.\\n</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"62 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00540-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00540-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The continuous stochastic gradient method: part II–application and numerics
In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables and an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.