排序检索模型的隐私保护框架

Q1 Mathematics
Tong Yan, Yunpeng Gao, Nan Zhang
{"title":"排序检索模型的隐私保护框架","authors":"Tong Yan, Yunpeng Gao, Nan Zhang","doi":"10.1186/s40649-019-0067-0","DOIUrl":null,"url":null,"abstract":"In this paper, we address privacy issues related to ranked retrieval model in web databases, each of which takes private attributes as part of input in the ranking function. Many web databases keep private attributes invisible to public and believe that the adversary is unable to reveal the private attribute values from query results. However, prior research (Rahman et al. in Proc VLDB Endow 8:1106–17, 2015) studied the problem of rank-based inference of private attributes over web databases. They found that one can infer the value of private attributes of a victim tuple by issuing well-designed queries through a top-k query interface. To address the privacy issue, in this paper, we propose a novel privacy-preserving framework. Our framework protects private attributes’ privacy not only under inference attacks but also under arbitrary attack methods. In particular, we classify adversaries into two widely existing categories: domain-ignorant and domain-expert adversaries. Then, we develop equivalent set with virtual tuples (ESVT) for domain-ignorant adversaries and equivalent set with true tuples (ESTT) for domain-expert adversaries. The ESVT and the ESTT are the primary parts of our privacy-preserving framework. To evaluate the performance, we define a measurement of privacy guarantee for private attributes and measurements for utility loss. We prove that both ESVT and ESTT achieve the privacy guarantee. We also develop heuristic algorithms for ESVT and ESTT, respectively, under the consideration of minimizing utility loss. We demonstrate the effectiveness of our techniques through theoretical analysis and extensive experiments over real-world dataset.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"46 11","pages":"1-25"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A privacy-preserving framework for ranked retrieval model\",\"authors\":\"Tong Yan, Yunpeng Gao, Nan Zhang\",\"doi\":\"10.1186/s40649-019-0067-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address privacy issues related to ranked retrieval model in web databases, each of which takes private attributes as part of input in the ranking function. Many web databases keep private attributes invisible to public and believe that the adversary is unable to reveal the private attribute values from query results. However, prior research (Rahman et al. in Proc VLDB Endow 8:1106–17, 2015) studied the problem of rank-based inference of private attributes over web databases. They found that one can infer the value of private attributes of a victim tuple by issuing well-designed queries through a top-k query interface. To address the privacy issue, in this paper, we propose a novel privacy-preserving framework. Our framework protects private attributes’ privacy not only under inference attacks but also under arbitrary attack methods. In particular, we classify adversaries into two widely existing categories: domain-ignorant and domain-expert adversaries. Then, we develop equivalent set with virtual tuples (ESVT) for domain-ignorant adversaries and equivalent set with true tuples (ESTT) for domain-expert adversaries. The ESVT and the ESTT are the primary parts of our privacy-preserving framework. To evaluate the performance, we define a measurement of privacy guarantee for private attributes and measurements for utility loss. We prove that both ESVT and ESTT achieve the privacy guarantee. We also develop heuristic algorithms for ESVT and ESTT, respectively, under the consideration of minimizing utility loss. We demonstrate the effectiveness of our techniques through theoretical analysis and extensive experiments over real-world dataset.\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"46 11\",\"pages\":\"1-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-019-0067-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-019-0067-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们解决了与web数据库中排名检索模型相关的隐私问题,每个数据库都将私有属性作为排名函数输入的一部分。许多web数据库保持私有属性对公共不可见,并认为攻击者无法从查询结果中揭示私有属性值。然而,先前的研究(Rahman et al. in Proc VLDB Endow 8:1106 - 17,2015)研究了基于web数据库的私有属性的排名推理问题。他们发现,可以通过top-k查询接口发出设计良好的查询来推断受害元组的私有属性值。为了解决隐私问题,本文提出了一种新的隐私保护框架。该框架既能在推理攻击下保护私有属性的隐私,又能在任意攻击方式下保护私有属性的隐私。特别地,我们将对手分为两类:领域无知和领域专家对手。然后,我们针对领域无知的对手开发了具有虚拟元组的等价集(ESVT),针对领域专家的对手开发了具有真元组的等价集(ESTT)。ESVT和ESTT是我们隐私保护框架的主要部分。为了评估性能,我们定义了私有属性的隐私保证度量和效用损失度量。我们证明了ESVT和ESTT都实现了隐私保证。在最小化效用损失的考虑下,我们分别开发了ESVT和ESTT的启发式算法。我们通过理论分析和对现实世界数据集的广泛实验证明了我们技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A privacy-preserving framework for ranked retrieval model
In this paper, we address privacy issues related to ranked retrieval model in web databases, each of which takes private attributes as part of input in the ranking function. Many web databases keep private attributes invisible to public and believe that the adversary is unable to reveal the private attribute values from query results. However, prior research (Rahman et al. in Proc VLDB Endow 8:1106–17, 2015) studied the problem of rank-based inference of private attributes over web databases. They found that one can infer the value of private attributes of a victim tuple by issuing well-designed queries through a top-k query interface. To address the privacy issue, in this paper, we propose a novel privacy-preserving framework. Our framework protects private attributes’ privacy not only under inference attacks but also under arbitrary attack methods. In particular, we classify adversaries into two widely existing categories: domain-ignorant and domain-expert adversaries. Then, we develop equivalent set with virtual tuples (ESVT) for domain-ignorant adversaries and equivalent set with true tuples (ESTT) for domain-expert adversaries. The ESVT and the ESTT are the primary parts of our privacy-preserving framework. To evaluate the performance, we define a measurement of privacy guarantee for private attributes and measurements for utility loss. We prove that both ESVT and ESTT achieve the privacy guarantee. We also develop heuristic algorithms for ESVT and ESTT, respectively, under the consideration of minimizing utility loss. We demonstrate the effectiveness of our techniques through theoretical analysis and extensive experiments over real-world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Social Networks
Computational Social Networks Mathematics-Modeling and Simulation
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信