{"title":"复杂的美国移民网络","authors":"Batyr Charyyev, Mehmet Hadi Gunes","doi":"10.1186/s40649-019-0061-6","DOIUrl":null,"url":null,"abstract":"Economists and social scientists have studied the human migration extensively. However, the complex network of human mobility in the United States (US) is not studied in depth. In this paper, we analyze migration network between counties and states in the US between 2000 and 2015 to analyze the overall structure of US migration and yearly changes using temporal analysis. We aggregated network on different time windows and analyzed for both county and state level. Analyzing flow between US counties and states, we focus on the migration during different periods such as economic prosperity of the housing boom and economic hardship of the housing bust. We observed that nodes at county and state level usually remain active, but there are considerable fluctuations on links. This indicates that migration patterns change over the time. However, we could identify a backbone at both county and state levels using disparity filter. Finally, we analyze impact of the political and socioeconomic factors on the migration. Using gravity model, we observe that population, political affiliation, poverty, and unemployment rate have influence on US migration.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"42 12","pages":"1-28"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complex network of United States migration\",\"authors\":\"Batyr Charyyev, Mehmet Hadi Gunes\",\"doi\":\"10.1186/s40649-019-0061-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Economists and social scientists have studied the human migration extensively. However, the complex network of human mobility in the United States (US) is not studied in depth. In this paper, we analyze migration network between counties and states in the US between 2000 and 2015 to analyze the overall structure of US migration and yearly changes using temporal analysis. We aggregated network on different time windows and analyzed for both county and state level. Analyzing flow between US counties and states, we focus on the migration during different periods such as economic prosperity of the housing boom and economic hardship of the housing bust. We observed that nodes at county and state level usually remain active, but there are considerable fluctuations on links. This indicates that migration patterns change over the time. However, we could identify a backbone at both county and state levels using disparity filter. Finally, we analyze impact of the political and socioeconomic factors on the migration. Using gravity model, we observe that population, political affiliation, poverty, and unemployment rate have influence on US migration.\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"42 12\",\"pages\":\"1-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-019-0061-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-019-0061-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Economists and social scientists have studied the human migration extensively. However, the complex network of human mobility in the United States (US) is not studied in depth. In this paper, we analyze migration network between counties and states in the US between 2000 and 2015 to analyze the overall structure of US migration and yearly changes using temporal analysis. We aggregated network on different time windows and analyzed for both county and state level. Analyzing flow between US counties and states, we focus on the migration during different periods such as economic prosperity of the housing boom and economic hardship of the housing bust. We observed that nodes at county and state level usually remain active, but there are considerable fluctuations on links. This indicates that migration patterns change over the time. However, we could identify a backbone at both county and state levels using disparity filter. Finally, we analyze impact of the political and socioeconomic factors on the migration. Using gravity model, we observe that population, political affiliation, poverty, and unemployment rate have influence on US migration.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.