{"title":"随机多块ADMM的线性代数透视:QP情况","authors":"Stefano Cipolla, Jacek Gondzio","doi":"10.1007/s10092-023-00546-0","DOIUrl":null,"url":null,"abstract":"<p>Embedding randomization procedures in the Alternating Direction Method of Multipliers (ADMM) has recently attracted an increasing amount of interest as a remedy to the fact that the direct multi-block generalization of ADMM is not necessarily convergent. Even if, in practice, the introduction of such techniques could <i>mitigate</i> the diverging behaviour of the multi-block extension of ADMM, from the theoretical point of view, it can ensure just the <i>convergence in expectation</i>, which may not be a good indicator of its robustness and efficiency. In this work, analysing the strongly convex quadratic programming case from a linear algebra perspective, we interpret the block Gauss–Seidel sweep performed by the multi-block ADMM in the context of the inexact Augmented Lagrangian Method. Using the proposed analysis, we are able to outline an alternative technique to those present in the literature which, supported from stronger theoretical guarantees, is able to ensure the convergence of the multi-block generalization of the ADMM method.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A linear algebra perspective on the random multi-block ADMM: the QP case\",\"authors\":\"Stefano Cipolla, Jacek Gondzio\",\"doi\":\"10.1007/s10092-023-00546-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Embedding randomization procedures in the Alternating Direction Method of Multipliers (ADMM) has recently attracted an increasing amount of interest as a remedy to the fact that the direct multi-block generalization of ADMM is not necessarily convergent. Even if, in practice, the introduction of such techniques could <i>mitigate</i> the diverging behaviour of the multi-block extension of ADMM, from the theoretical point of view, it can ensure just the <i>convergence in expectation</i>, which may not be a good indicator of its robustness and efficiency. In this work, analysing the strongly convex quadratic programming case from a linear algebra perspective, we interpret the block Gauss–Seidel sweep performed by the multi-block ADMM in the context of the inexact Augmented Lagrangian Method. Using the proposed analysis, we are able to outline an alternative technique to those present in the literature which, supported from stronger theoretical guarantees, is able to ensure the convergence of the multi-block generalization of the ADMM method.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-023-00546-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00546-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A linear algebra perspective on the random multi-block ADMM: the QP case
Embedding randomization procedures in the Alternating Direction Method of Multipliers (ADMM) has recently attracted an increasing amount of interest as a remedy to the fact that the direct multi-block generalization of ADMM is not necessarily convergent. Even if, in practice, the introduction of such techniques could mitigate the diverging behaviour of the multi-block extension of ADMM, from the theoretical point of view, it can ensure just the convergence in expectation, which may not be a good indicator of its robustness and efficiency. In this work, analysing the strongly convex quadratic programming case from a linear algebra perspective, we interpret the block Gauss–Seidel sweep performed by the multi-block ADMM in the context of the inexact Augmented Lagrangian Method. Using the proposed analysis, we are able to outline an alternative technique to those present in the literature which, supported from stronger theoretical guarantees, is able to ensure the convergence of the multi-block generalization of the ADMM method.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.