{"title":"长期养殖区海洋沉积物铁含量变化特征及其与粒度的关系","authors":"Zhang, Baoyi, Li, Manyi, An, Maoguo, Zhi, Chenglong, Li, Qingcai, Zhang, Yingmei, Han, Shuangyuan, Zheng, Haitao, Li, Jun, Chen, Huaixin, Chen, Qiao","doi":"10.1186/s10152-021-00554-z","DOIUrl":null,"url":null,"abstract":"Iron (Fe) is an essential component for marine ecosystems, and it is related to the growth of phytoplankton communities and environmental evolution in coastal area. However, the effect of aquaculture activities on sediment Fe levels is not well studied. Fe levels and grain sizes are determined in two cores (respectively Core C in the culture area and Core A in the control area) in Sishili Bay to reveal the influence of cultivation on sediment Fe levels over an extended period. The sediment Fe levels are distinguished in the upper sections (culture period) but equal in the lower sections (non-culture period) of the two cores. The core C has the same Fe levels as Core A before 1950s (non-culture period). However, the sediment Fe levels of Core C increased during 1950s–1970s (the algae culture period) and decreased after the 1970s (shellfish culture period) compared with Core A, indicating the algae and shellfish culture impose opposite effects on sediment Fe levels. Similarly, sediment grain sizes are observed to be finer during the algae culture period but coarser during the shellfish culture period, and the variation of sediment grain sizes because of culture activities is the important factor affecting sediment Fe levels. The slowing down of ocean current due to algae culture causes finer particles and higher Fe levels in sediment. However, during the shellfish culture period, bio-deposition and re-suspension play major roles in coarsening sediment particles and decreasing sediment Fe levels.","PeriodicalId":55063,"journal":{"name":"Helgoland Marine Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation characteristics of ocean sediment Fe levels and their relationship with grain sizes in culture areas over a long period\",\"authors\":\"Zhang, Baoyi, Li, Manyi, An, Maoguo, Zhi, Chenglong, Li, Qingcai, Zhang, Yingmei, Han, Shuangyuan, Zheng, Haitao, Li, Jun, Chen, Huaixin, Chen, Qiao\",\"doi\":\"10.1186/s10152-021-00554-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron (Fe) is an essential component for marine ecosystems, and it is related to the growth of phytoplankton communities and environmental evolution in coastal area. However, the effect of aquaculture activities on sediment Fe levels is not well studied. Fe levels and grain sizes are determined in two cores (respectively Core C in the culture area and Core A in the control area) in Sishili Bay to reveal the influence of cultivation on sediment Fe levels over an extended period. The sediment Fe levels are distinguished in the upper sections (culture period) but equal in the lower sections (non-culture period) of the two cores. The core C has the same Fe levels as Core A before 1950s (non-culture period). However, the sediment Fe levels of Core C increased during 1950s–1970s (the algae culture period) and decreased after the 1970s (shellfish culture period) compared with Core A, indicating the algae and shellfish culture impose opposite effects on sediment Fe levels. Similarly, sediment grain sizes are observed to be finer during the algae culture period but coarser during the shellfish culture period, and the variation of sediment grain sizes because of culture activities is the important factor affecting sediment Fe levels. The slowing down of ocean current due to algae culture causes finer particles and higher Fe levels in sediment. However, during the shellfish culture period, bio-deposition and re-suspension play major roles in coarsening sediment particles and decreasing sediment Fe levels.\",\"PeriodicalId\":55063,\"journal\":{\"name\":\"Helgoland Marine Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Helgoland Marine Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s10152-021-00554-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helgoland Marine Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s10152-021-00554-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Variation characteristics of ocean sediment Fe levels and their relationship with grain sizes in culture areas over a long period
Iron (Fe) is an essential component for marine ecosystems, and it is related to the growth of phytoplankton communities and environmental evolution in coastal area. However, the effect of aquaculture activities on sediment Fe levels is not well studied. Fe levels and grain sizes are determined in two cores (respectively Core C in the culture area and Core A in the control area) in Sishili Bay to reveal the influence of cultivation on sediment Fe levels over an extended period. The sediment Fe levels are distinguished in the upper sections (culture period) but equal in the lower sections (non-culture period) of the two cores. The core C has the same Fe levels as Core A before 1950s (non-culture period). However, the sediment Fe levels of Core C increased during 1950s–1970s (the algae culture period) and decreased after the 1970s (shellfish culture period) compared with Core A, indicating the algae and shellfish culture impose opposite effects on sediment Fe levels. Similarly, sediment grain sizes are observed to be finer during the algae culture period but coarser during the shellfish culture period, and the variation of sediment grain sizes because of culture activities is the important factor affecting sediment Fe levels. The slowing down of ocean current due to algae culture causes finer particles and higher Fe levels in sediment. However, during the shellfish culture period, bio-deposition and re-suspension play major roles in coarsening sediment particles and decreasing sediment Fe levels.
期刊介绍:
Helgoland Marine Research is an open access, peer reviewed journal, publishing original research as well as reviews on all aspects of marine and brackish water ecosystems, with a focus on how organisms survive in, and interact with, their environment.
The aim of Helgoland Marine Research is to publish work with a regional focus, but with clear global implications, or vice versa; research with global emphasis and regional ramifications. We are particularly interested in contributions that further our general understanding of how marine ecosystems work, and that concentrate on species’ interactions.