虚自由群的基本子群

Pub Date : 2021-12-06 DOI:10.4171/ggd/638
Simon André
{"title":"虚自由群的基本子群","authors":"Simon André","doi":"10.4171/ggd/638","DOIUrl":null,"url":null,"abstract":"We give a description of elementary subgroups (in the sense of first-order logic) of finitely generated virtually free groups. In particular, we recover the fact that elementary subgroups of finitely generated free groups are free factors. Moreover, one gives an algorithm that takes as input a finite presentation of a virtually free group $G$ and a finite subset $X$ of $G$, and decides if the subgroup of $G$ generated by $X$ is $\\forall\\exists$-elementary. We also prove that every elementary embedding of an equationally noetherian group into itself is an automorphism.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary subgroups of virtually free groups\",\"authors\":\"Simon André\",\"doi\":\"10.4171/ggd/638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a description of elementary subgroups (in the sense of first-order logic) of finitely generated virtually free groups. In particular, we recover the fact that elementary subgroups of finitely generated free groups are free factors. Moreover, one gives an algorithm that takes as input a finite presentation of a virtually free group $G$ and a finite subset $X$ of $G$, and decides if the subgroup of $G$ generated by $X$ is $\\\\forall\\\\exists$-elementary. We also prove that every elementary embedding of an equationally noetherian group into itself is an automorphism.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出有限生成虚自由群的基本子群(一阶逻辑意义上的)的描述。特别地,我们恢复了有限生成自由群的初等子群是自由因子的事实。此外,有人给出了一种算法,该算法将几乎自由的群$G$和$G$的有限子集$X$的有限表示作为输入,并确定$X$生成的$G$的子群是否为$\forall\exists$ -初等。我们还证明了等式诺瑟群在自身中的每一个初等嵌入都是一个自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Elementary subgroups of virtually free groups
We give a description of elementary subgroups (in the sense of first-order logic) of finitely generated virtually free groups. In particular, we recover the fact that elementary subgroups of finitely generated free groups are free factors. Moreover, one gives an algorithm that takes as input a finite presentation of a virtually free group $G$ and a finite subset $X$ of $G$, and decides if the subgroup of $G$ generated by $X$ is $\forall\exists$-elementary. We also prove that every elementary embedding of an equationally noetherian group into itself is an automorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信