可重整群的康托动力学

Pub Date : 2021-12-06 DOI:10.4171/ggd/636
Steven Hurder, Olga Lukina, Wouter van Limbeek
{"title":"可重整群的康托动力学","authors":"Steven Hurder, Olga Lukina, Wouter van Limbeek","doi":"10.4171/ggd/636","DOIUrl":null,"url":null,"abstract":"A group $\\Gamma$ is said to be “finitely non-co-Hopfian,” or “renormalizable,” if there exists a self-embedding $\\varphi \\colon \\Gamma \\to \\Gamma$ whose image is a proper subgroup of finite index. Such a proper self-embedding is called a “renormalization for $\\Gamma$.” In this work, we associate a dynamical system to a renormalization $\\varphi$ of $\\Gamma$. The discriminant invariant ${\\mathcal D}_{\\varphi}$ of the associated Cantor dynamical system is a profinite group which is a measure of the asymmetries of the dynamical system. If ${\\mathcal D}_{\\varphi}$ is a finite group for some renormalization, we show that $\\Gamma/C_{\\varphi}$ is virtually nilpotent, where $C_{\\varphi}$ is the kernel of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show that the action associated to a renormalizable group is virtually renormalizable. We study the properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable Cantor action is an invariant of continuous orbit equivalence. Finally, the notion of a renormalizable Cantor action is related to the notion of a self-replicating group of automorphisms of a rooted tree.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cantor dynamics of renormalizable groups\",\"authors\":\"Steven Hurder, Olga Lukina, Wouter van Limbeek\",\"doi\":\"10.4171/ggd/636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A group $\\\\Gamma$ is said to be “finitely non-co-Hopfian,” or “renormalizable,” if there exists a self-embedding $\\\\varphi \\\\colon \\\\Gamma \\\\to \\\\Gamma$ whose image is a proper subgroup of finite index. Such a proper self-embedding is called a “renormalization for $\\\\Gamma$.” In this work, we associate a dynamical system to a renormalization $\\\\varphi$ of $\\\\Gamma$. The discriminant invariant ${\\\\mathcal D}_{\\\\varphi}$ of the associated Cantor dynamical system is a profinite group which is a measure of the asymmetries of the dynamical system. If ${\\\\mathcal D}_{\\\\varphi}$ is a finite group for some renormalization, we show that $\\\\Gamma/C_{\\\\varphi}$ is virtually nilpotent, where $C_{\\\\varphi}$ is the kernel of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show that the action associated to a renormalizable group is virtually renormalizable. We study the properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable Cantor action is an invariant of continuous orbit equivalence. Finally, the notion of a renormalizable Cantor action is related to the notion of a self-replicating group of automorphisms of a rooted tree.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个自嵌入的$\varphi \colon \Gamma \to \Gamma$,其像是有限索引的适当子群,则群$\Gamma$被称为“有限非共hopfian”或“可重整的”。这种适当的自嵌入被称为“$\Gamma$的重整化”。在这项工作中,我们将动力系统与$\Gamma$的重整化$\varphi$联系起来。关联康托动力系统的判别不变量${\mathcal D}_{\varphi}$是一个无限群,它是动力系统不对称性的度量。如果${\mathcal D}_{\varphi}$是某种重整化的有限群,我们证明$\Gamma/C_{\varphi}$实际上是幂零的,其中$C_{\varphi}$是动作图的核。我们引入了(虚拟)可重整康托动作的概念,并证明了与可重整群相关的动作是虚拟可重整的。研究了虚可重整康托作用的性质,证明了虚可重整是连续轨道等价的不变量。此外,可重整康托作用的判别不变量是连续轨道等价的不变量。最后,可重整康托动作的概念与根树的自同构的自复制群的概念相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cantor dynamics of renormalizable groups
A group $\Gamma$ is said to be “finitely non-co-Hopfian,” or “renormalizable,” if there exists a self-embedding $\varphi \colon \Gamma \to \Gamma$ whose image is a proper subgroup of finite index. Such a proper self-embedding is called a “renormalization for $\Gamma$.” In this work, we associate a dynamical system to a renormalization $\varphi$ of $\Gamma$. The discriminant invariant ${\mathcal D}_{\varphi}$ of the associated Cantor dynamical system is a profinite group which is a measure of the asymmetries of the dynamical system. If ${\mathcal D}_{\varphi}$ is a finite group for some renormalization, we show that $\Gamma/C_{\varphi}$ is virtually nilpotent, where $C_{\varphi}$ is the kernel of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show that the action associated to a renormalizable group is virtually renormalizable. We study the properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable Cantor action is an invariant of continuous orbit equivalence. Finally, the notion of a renormalizable Cantor action is related to the notion of a self-replicating group of automorphisms of a rooted tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信