Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew Duncan
{"title":"统计有限元法的理论保证","authors":"Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew Duncan","doi":"10.1137/21m1463963","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1278-1307, December 2023. <br/> Abstract. The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesized with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the StatFEM demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the 2-Wasserstein distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which tests the robustness of StatFEM when extended to nonlinear quantities of interest.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical Guarantees for the Statistical Finite Element Method\",\"authors\":\"Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew Duncan\",\"doi\":\"10.1137/21m1463963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1278-1307, December 2023. <br/> Abstract. The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesized with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the StatFEM demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the 2-Wasserstein distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which tests the robustness of StatFEM when extended to nonlinear quantities of interest.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1463963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1463963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Theoretical Guarantees for the Statistical Finite Element Method
SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1278-1307, December 2023. Abstract. The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesized with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the StatFEM demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the 2-Wasserstein distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which tests the robustness of StatFEM when extended to nonlinear quantities of interest.