统计有限元法的理论保证

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew Duncan
{"title":"统计有限元法的理论保证","authors":"Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew Duncan","doi":"10.1137/21m1463963","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1278-1307, December 2023. <br/> Abstract. The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesized with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the StatFEM demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the 2-Wasserstein distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which tests the robustness of StatFEM when extended to nonlinear quantities of interest.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical Guarantees for the Statistical Finite Element Method\",\"authors\":\"Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew Duncan\",\"doi\":\"10.1137/21m1463963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1278-1307, December 2023. <br/> Abstract. The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesized with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the StatFEM demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the 2-Wasserstein distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which tests the robustness of StatFEM when extended to nonlinear quantities of interest.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1463963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1463963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

SIAM/ASA不确定度量化杂志,第11卷,第4期,1278-1307页,2023年12月。摘要。统计有限元法(StatFEM)是一种新兴的概率方法,它允许将物理系统的观测与PDE的数值解综合起来,以便在连贯的统计框架中描述它,以补偿模型误差。这项工作提出了一个新的理论分析的StatFEM表明,它具有类似的收敛性质,它是基于有限元方法。我们的结果构成了理想先验和后验之间的2-Wasserstein距离及其StatFEM近似的界,并表明该距离以与有限元解收敛于真实解相同的网格依赖速率收敛。给出了几个数值例子来证明我们的理论,包括一个例子,测试了StatFEM扩展到非线性量时的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Guarantees for the Statistical Finite Element Method
SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1278-1307, December 2023.
Abstract. The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesized with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the StatFEM demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the 2-Wasserstein distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which tests the robustness of StatFEM when extended to nonlinear quantities of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信