求解风险规避pde约束优化问题的局部自适应降基方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zilong Zou, Drew P. Kouri, Wilkins Aquino
{"title":"求解风险规避pde约束优化问题的局部自适应降基方法","authors":"Zilong Zou, Drew P. Kouri, Wilkins Aquino","doi":"10.1137/21m1411342","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 10, Issue 4, Page 1629-1651, December 2022. <br/> Abstract. The numerical solution of risk-averse optimization problems constrained by PDEs requires substantial computational effort resulting from the discretization of the underlying PDE in both the physical and stochastic dimensions. To practically solve these challenging optimization problems, one must intelligently manage the individual discretization fidelities throughout the optimization iteration. In this work, we combine an inexact trust-region algorithm with the recently developed local reduced-basis approximation to efficiently solve risk-averse optimization problems with PDE constraints. The main contribution of this work is a numerical framework for systematically constructing surrogate models for the trust-region subproblem and the objective function using local reduced-basis approximations. We demonstrate the effectiveness of our approach through several numerical examples.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Locally Adapted Reduced-Basis Method for Solving Risk-Averse PDE-Constrained Optimization Problems\",\"authors\":\"Zilong Zou, Drew P. Kouri, Wilkins Aquino\",\"doi\":\"10.1137/21m1411342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 10, Issue 4, Page 1629-1651, December 2022. <br/> Abstract. The numerical solution of risk-averse optimization problems constrained by PDEs requires substantial computational effort resulting from the discretization of the underlying PDE in both the physical and stochastic dimensions. To practically solve these challenging optimization problems, one must intelligently manage the individual discretization fidelities throughout the optimization iteration. In this work, we combine an inexact trust-region algorithm with the recently developed local reduced-basis approximation to efficiently solve risk-averse optimization problems with PDE constraints. The main contribution of this work is a numerical framework for systematically constructing surrogate models for the trust-region subproblem and the objective function using local reduced-basis approximations. We demonstrate the effectiveness of our approach through several numerical examples.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1411342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1411342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA Journal on Uncertainty quantitation, vol . 10, Issue 4, Page 1629-1651, December 2022。摘要。受偏微分方程约束的风险规避优化问题的数值解需要大量的计算量,这是由于底层偏微分方程在物理和随机两个维度上的离散化造成的。为了实际解决这些具有挑战性的优化问题,必须在整个优化迭代过程中智能地管理单个离散化保真度。在这项工作中,我们将一种不精确的信任域算法与最近发展的局部约基近似相结合,以有效地解决具有PDE约束的风险规避优化问题。该工作的主要贡献是一个数值框架,用于系统地构建信任域子问题和目标函数的代理模型,并使用局部约基近似。通过几个数值算例证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Locally Adapted Reduced-Basis Method for Solving Risk-Averse PDE-Constrained Optimization Problems
SIAM/ASA Journal on Uncertainty Quantification, Volume 10, Issue 4, Page 1629-1651, December 2022.
Abstract. The numerical solution of risk-averse optimization problems constrained by PDEs requires substantial computational effort resulting from the discretization of the underlying PDE in both the physical and stochastic dimensions. To practically solve these challenging optimization problems, one must intelligently manage the individual discretization fidelities throughout the optimization iteration. In this work, we combine an inexact trust-region algorithm with the recently developed local reduced-basis approximation to efficiently solve risk-averse optimization problems with PDE constraints. The main contribution of this work is a numerical framework for systematically constructing surrogate models for the trust-region subproblem and the objective function using local reduced-basis approximations. We demonstrate the effectiveness of our approach through several numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信