{"title":"Mg/PCL静电纺膜的制备及初步研究","authors":"Maheshati Abudihani, Yijun Yu, Qingqing Wang, Leiying Miao","doi":"21.00028","DOIUrl":null,"url":null,"abstract":"Magnesium (Mg) metal and its alloy degradation product magnesium ion (Mg<sup>2+</sup>) can stimulate the metabolic activity of bone cells, which is beneficial to bone growth and healing. With biodegradable polycaprolactone (PCL) and magnesium particles as raw materials, electrospinning technology is used to prepare electrospun membrane materials doped with magnesium particles. Meanwhile, the scanning electron microscope, X-ray diffraction analysis technology and microcomputer-controlled electronic universal testing machine are adopted to analyze the physical and chemical properties of the material. The biocompatibility of electrospun membranes and their potential to induce osteogenic differentiation of human dental pulp stem cells (hDPSCs) were evaluated by in vitro cell experiments. The results showed that magnesium/PCL electrospun membranes doped with magnesium particles were successfully prepared with electrospinning technology, and the material has a good porous structure. Magnesium/PCL electrospun membranes have good biocompatibility and have the potential to induce osteogenic differentiation of hDPSCs. Among them, the effects of 10% magnesium/PCL electrospun membranes were the most obvious. Clinically, these materials provide new ideas for the restoration of alveolar bone defects and provide an experimental basis for the realization of alveolar bone regeneration.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"73 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Mg/PCL electrospun membranes and preliminary study\",\"authors\":\"Maheshati Abudihani, Yijun Yu, Qingqing Wang, Leiying Miao\",\"doi\":\"21.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium (Mg) metal and its alloy degradation product magnesium ion (Mg<sup>2+</sup>) can stimulate the metabolic activity of bone cells, which is beneficial to bone growth and healing. With biodegradable polycaprolactone (PCL) and magnesium particles as raw materials, electrospinning technology is used to prepare electrospun membrane materials doped with magnesium particles. Meanwhile, the scanning electron microscope, X-ray diffraction analysis technology and microcomputer-controlled electronic universal testing machine are adopted to analyze the physical and chemical properties of the material. The biocompatibility of electrospun membranes and their potential to induce osteogenic differentiation of human dental pulp stem cells (hDPSCs) were evaluated by in vitro cell experiments. The results showed that magnesium/PCL electrospun membranes doped with magnesium particles were successfully prepared with electrospinning technology, and the material has a good porous structure. Magnesium/PCL electrospun membranes have good biocompatibility and have the potential to induce osteogenic differentiation of hDPSCs. Among them, the effects of 10% magnesium/PCL electrospun membranes were the most obvious. Clinically, these materials provide new ideas for the restoration of alveolar bone defects and provide an experimental basis for the realization of alveolar bone regeneration.\",\"PeriodicalId\":48847,\"journal\":{\"name\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"volume\":\"73 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/21.00028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/21.00028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Preparation of Mg/PCL electrospun membranes and preliminary study
Magnesium (Mg) metal and its alloy degradation product magnesium ion (Mg2+) can stimulate the metabolic activity of bone cells, which is beneficial to bone growth and healing. With biodegradable polycaprolactone (PCL) and magnesium particles as raw materials, electrospinning technology is used to prepare electrospun membrane materials doped with magnesium particles. Meanwhile, the scanning electron microscope, X-ray diffraction analysis technology and microcomputer-controlled electronic universal testing machine are adopted to analyze the physical and chemical properties of the material. The biocompatibility of electrospun membranes and their potential to induce osteogenic differentiation of human dental pulp stem cells (hDPSCs) were evaluated by in vitro cell experiments. The results showed that magnesium/PCL electrospun membranes doped with magnesium particles were successfully prepared with electrospinning technology, and the material has a good porous structure. Magnesium/PCL electrospun membranes have good biocompatibility and have the potential to induce osteogenic differentiation of hDPSCs. Among them, the effects of 10% magnesium/PCL electrospun membranes were the most obvious. Clinically, these materials provide new ideas for the restoration of alveolar bone defects and provide an experimental basis for the realization of alveolar bone regeneration.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.