流可视化中的深度学习方法

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Liu, Can, Jiang, Ruike, Wei, Datong, Yang, Changhe, Li, Yanda, Wang, Fang, Yuan, Xiaoru
{"title":"流可视化中的深度学习方法","authors":"Liu, Can, Jiang, Ruike, Wei, Datong, Yang, Changhe, Li, Yanda, Wang, Fang, Yuan, Xiaoru","doi":"10.1186/s42774-022-00113-1","DOIUrl":null,"url":null,"abstract":"With the development of deep learning (DL) techniques, many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods. We reviewed the approaches to deep learning technology in flow visualization and discussed the technical benefits of these approaches. We also analyzed the prospects of the development of flow visualization with the help of deep learning.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"113 5-6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep learning approaches in flow visualization\",\"authors\":\"Liu, Can, Jiang, Ruike, Wei, Datong, Yang, Changhe, Li, Yanda, Wang, Fang, Yuan, Xiaoru\",\"doi\":\"10.1186/s42774-022-00113-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of deep learning (DL) techniques, many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods. We reviewed the approaches to deep learning technology in flow visualization and discussed the technical benefits of these approaches. We also analyzed the prospects of the development of flow visualization with the help of deep learning.\",\"PeriodicalId\":33737,\"journal\":{\"name\":\"Advances in Aerodynamics\",\"volume\":\"113 5-6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s42774-022-00113-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s42774-022-00113-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 9

摘要

随着深度学习技术的发展,流可视化中许多依赖于复杂分析算法的任务现在可以被深度学习方法所取代。我们回顾了流可视化中深度学习技术的方法,并讨论了这些方法的技术优势。我们还分析了流可视化在深度学习的帮助下的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning approaches in flow visualization
With the development of deep learning (DL) techniques, many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods. We reviewed the approaches to deep learning technology in flow visualization and discussed the technical benefits of these approaches. We also analyzed the prospects of the development of flow visualization with the help of deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
35
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信