一类具有广义意义的分配格的研究

Order Pub Date : 2023-11-29 DOI:10.1007/s11083-023-09652-8
Ismael Calomino, Jorge Castro, Sergio Celani, Luciana Valenzuela
{"title":"一类具有广义意义的分配格的研究","authors":"Ismael Calomino, Jorge Castro, Sergio Celani, Luciana Valenzuela","doi":"10.1007/s11083-023-09652-8","DOIUrl":null,"url":null,"abstract":"<p>A generalized implication on a distributive lattice <span>\\(\\varvec{A}\\)</span> is a function between <span>\\(\\varvec{A} \\times \\varvec{A}\\)</span> to ideals of <span>\\(\\varvec{A}\\)</span> satisfying similar conditions to strict implication of weak Heyting algebras. Relative anihilators and quasi-modal operators are examples of generalized implication in distributive lattices. The aim of this paper is to study some classes of distributive lattices with a generalized implication. In particular, we prove that the class of Boolean algebras endowed with a quasi-modal operator is equivalent to the class of Boolean algebras with a generalized implication. This equivalence allow us to give another presentation of the class of quasi-monadic algebras and the class of compingent algebras defined by H. De Vries. We also introduce the notion of gi-sublattice and we characterize the simple and subdirectly irreducible distributive lattices with a generalized implication through topological duality.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Some Classes of Distributive Lattices with a Generalized Implication\",\"authors\":\"Ismael Calomino, Jorge Castro, Sergio Celani, Luciana Valenzuela\",\"doi\":\"10.1007/s11083-023-09652-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalized implication on a distributive lattice <span>\\\\(\\\\varvec{A}\\\\)</span> is a function between <span>\\\\(\\\\varvec{A} \\\\times \\\\varvec{A}\\\\)</span> to ideals of <span>\\\\(\\\\varvec{A}\\\\)</span> satisfying similar conditions to strict implication of weak Heyting algebras. Relative anihilators and quasi-modal operators are examples of generalized implication in distributive lattices. The aim of this paper is to study some classes of distributive lattices with a generalized implication. In particular, we prove that the class of Boolean algebras endowed with a quasi-modal operator is equivalent to the class of Boolean algebras with a generalized implication. This equivalence allow us to give another presentation of the class of quasi-monadic algebras and the class of compingent algebras defined by H. De Vries. We also introduce the notion of gi-sublattice and we characterize the simple and subdirectly irreducible distributive lattices with a generalized implication through topological duality.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-023-09652-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-023-09652-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分配格\(\varvec{A}\)上的广义蕴涵是\(\varvec{A} \times \varvec{A}\)到\(\varvec{A}\)的理想之间的函数,满足与弱Heyting代数严格蕴涵相似的条件。相对消煞算子和拟模态算子是分布格中广义蕴涵的例子。本文的目的是研究一类具有广义意义的分配格。特别地,我们证明了具有拟模态算子的布尔代数类等价于具有广义蕴涵的布尔代数类。这个等价性允许我们给出H. De Vries定义的拟一元代数和分量代数的另一种表示。引入了gi-子格的概念,并通过拓扑对偶对简单和次直接不可约的分配格进行了广义的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Some Classes of Distributive Lattices with a Generalized Implication

A generalized implication on a distributive lattice \(\varvec{A}\) is a function between \(\varvec{A} \times \varvec{A}\) to ideals of \(\varvec{A}\) satisfying similar conditions to strict implication of weak Heyting algebras. Relative anihilators and quasi-modal operators are examples of generalized implication in distributive lattices. The aim of this paper is to study some classes of distributive lattices with a generalized implication. In particular, we prove that the class of Boolean algebras endowed with a quasi-modal operator is equivalent to the class of Boolean algebras with a generalized implication. This equivalence allow us to give another presentation of the class of quasi-monadic algebras and the class of compingent algebras defined by H. De Vries. We also introduce the notion of gi-sublattice and we characterize the simple and subdirectly irreducible distributive lattices with a generalized implication through topological duality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信