利用排队理论绘制随机基因表达模型的图景

Juraj Szavits-Nossan, Ramon Grima
{"title":"利用排队理论绘制随机基因表达模型的图景","authors":"Juraj Szavits-Nossan, Ramon Grima","doi":"arxiv-2307.03253","DOIUrl":null,"url":null,"abstract":"Stochastic models of gene expression are typically formulated using the\nchemical master equation, which can be solved exactly or approximately using a\nrepertoire of analytical methods. Here, we provide a tutorial review of an\nalternative approach based on queuing theory that has rarely been used in the\nliterature of gene expression. We discuss the interpretation of six types of\ninfinite server queues from the angle of stochastic single-cell biology and\nprovide analytical expressions for the stationary and non-stationary\ndistributions and/or moments of mRNA/protein numbers, and bounds on the Fano\nfactor. This approach may enable the solution of complex models which have\nhitherto evaded analytical solution.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"58 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charting the landscape of stochastic gene expression models using queueing theory\",\"authors\":\"Juraj Szavits-Nossan, Ramon Grima\",\"doi\":\"arxiv-2307.03253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic models of gene expression are typically formulated using the\\nchemical master equation, which can be solved exactly or approximately using a\\nrepertoire of analytical methods. Here, we provide a tutorial review of an\\nalternative approach based on queuing theory that has rarely been used in the\\nliterature of gene expression. We discuss the interpretation of six types of\\ninfinite server queues from the angle of stochastic single-cell biology and\\nprovide analytical expressions for the stationary and non-stationary\\ndistributions and/or moments of mRNA/protein numbers, and bounds on the Fano\\nfactor. This approach may enable the solution of complex models which have\\nhitherto evaded analytical solution.\",\"PeriodicalId\":501170,\"journal\":{\"name\":\"arXiv - QuanBio - Subcellular Processes\",\"volume\":\"58 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Subcellular Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2307.03253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.03253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因表达的随机模型通常是用化学主方程来表示的,它可以用一系列的分析方法精确或近似地求解。在这里,我们提供了一个基于排队论的替代方法的教程综述,这种方法很少在基因表达的文献中使用。我们从随机单细胞生物学的角度讨论了六种类型的有限服务器队列的解释,并提供了mRNA/蛋白数的平稳和非平稳分布和/或矩的解析表达式,以及fanfactor的界。这种方法可以解决迄今为止无法通过分析解决的复杂模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Charting the landscape of stochastic gene expression models using queueing theory
Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queuing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and non-stationary distributions and/or moments of mRNA/protein numbers, and bounds on the Fano factor. This approach may enable the solution of complex models which have hitherto evaded analytical solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信