Kazemzadeh-Parsi, Mohammad Javad, Ammar, Amine, Duval, Jean Louis, Chinesta, Francisco
{"title":"基于pgd的空间分隔表示中增强的参数形状描述","authors":"Kazemzadeh-Parsi, Mohammad Javad, Ammar, Amine, Duval, Jean Louis, Chinesta, Francisco","doi":"10.1186/s40323-021-00208-2","DOIUrl":null,"url":null,"abstract":"Space separation within the Proper Generalized Decomposition—PGD—rationale allows solving high dimensional problems as a sequence of lower dimensional ones. In our former works, different geometrical transformations were proposed for addressing complex shapes and spatially non-separable domains. Efficient implementation of separated representations needs expressing the domain as a product of characteristic functions involving the different space coordinates. In the case of complex shapes, more sophisticated geometrical transformations are needed to map the complex physical domain into a regular one where computations are performed. This paper aims at proposing a very efficient route for accomplishing such space separation. A NURBS-based geometry representation, usual in computer aided design—CAD—, is retained and combined with a fully separated representation for allying efficiency (ensured by the fully separated representations) and generality (by addressing complex geometries). Some numerical examples are considered to prove the potential of the proposed methodology.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"31 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enhanced parametric shape descriptions in PGD-based space separated representations\",\"authors\":\"Kazemzadeh-Parsi, Mohammad Javad, Ammar, Amine, Duval, Jean Louis, Chinesta, Francisco\",\"doi\":\"10.1186/s40323-021-00208-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space separation within the Proper Generalized Decomposition—PGD—rationale allows solving high dimensional problems as a sequence of lower dimensional ones. In our former works, different geometrical transformations were proposed for addressing complex shapes and spatially non-separable domains. Efficient implementation of separated representations needs expressing the domain as a product of characteristic functions involving the different space coordinates. In the case of complex shapes, more sophisticated geometrical transformations are needed to map the complex physical domain into a regular one where computations are performed. This paper aims at proposing a very efficient route for accomplishing such space separation. A NURBS-based geometry representation, usual in computer aided design—CAD—, is retained and combined with a fully separated representation for allying efficiency (ensured by the fully separated representations) and generality (by addressing complex geometries). Some numerical examples are considered to prove the potential of the proposed methodology.\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"31 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40323-021-00208-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-021-00208-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Enhanced parametric shape descriptions in PGD-based space separated representations
Space separation within the Proper Generalized Decomposition—PGD—rationale allows solving high dimensional problems as a sequence of lower dimensional ones. In our former works, different geometrical transformations were proposed for addressing complex shapes and spatially non-separable domains. Efficient implementation of separated representations needs expressing the domain as a product of characteristic functions involving the different space coordinates. In the case of complex shapes, more sophisticated geometrical transformations are needed to map the complex physical domain into a regular one where computations are performed. This paper aims at proposing a very efficient route for accomplishing such space separation. A NURBS-based geometry representation, usual in computer aided design—CAD—, is retained and combined with a fully separated representation for allying efficiency (ensured by the fully separated representations) and generality (by addressing complex geometries). Some numerical examples are considered to prove the potential of the proposed methodology.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.