{"title":"基于机器学习的最优分布式发电管理框架,包括电动汽车负载","authors":"Ch Sekhar Gujjarlapudi, Dipu Sarkar, Sravan Kumar Gunturi, Yanrenthung Odyuo","doi":"10.1680/jener.23.00012","DOIUrl":null,"url":null,"abstract":"The load profile of radial distribution networks (RDN) gets significantly impacted when plug- in electric vehicles (PEVs) are connected to it in large numbers. The disturbances in the load profile may lead to increased power losses in distribution lines, and deterioration of network voltage profile. Provision of distributed generation (DG) at strategic locations in the distribution network can help to compensate the impact on the electrical network due to PEVs loads. This paper proposes the use of Machine Learning (ML) based models for determining the optimal location of distributed generators (DGs) in RDN. The proposed method considered time-varying load in addition to PEVs load. The suggested method determines optimal DGs placement based on Power loss reduction index (PLRI), and Voltage deviation index reduction index (VDIRI). Four distinct types of ML models were used in the proposed approach using synthesized data on IEEE 33-bus RDN. The performance of the ML models were evaluated with respect to mean squared error (MSE) and mean absolute percentage error (MAPE) and, for the ML models considered, Random Forest ML model gave the best performance.","PeriodicalId":48776,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Energy","volume":"21 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML based framework for optimal distributed generation management including EV loading\",\"authors\":\"Ch Sekhar Gujjarlapudi, Dipu Sarkar, Sravan Kumar Gunturi, Yanrenthung Odyuo\",\"doi\":\"10.1680/jener.23.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The load profile of radial distribution networks (RDN) gets significantly impacted when plug- in electric vehicles (PEVs) are connected to it in large numbers. The disturbances in the load profile may lead to increased power losses in distribution lines, and deterioration of network voltage profile. Provision of distributed generation (DG) at strategic locations in the distribution network can help to compensate the impact on the electrical network due to PEVs loads. This paper proposes the use of Machine Learning (ML) based models for determining the optimal location of distributed generators (DGs) in RDN. The proposed method considered time-varying load in addition to PEVs load. The suggested method determines optimal DGs placement based on Power loss reduction index (PLRI), and Voltage deviation index reduction index (VDIRI). Four distinct types of ML models were used in the proposed approach using synthesized data on IEEE 33-bus RDN. The performance of the ML models were evaluated with respect to mean squared error (MSE) and mean absolute percentage error (MAPE) and, for the ML models considered, Random Forest ML model gave the best performance.\",\"PeriodicalId\":48776,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"volume\":\"21 2\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jener.23.00012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jener.23.00012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
ML based framework for optimal distributed generation management including EV loading
The load profile of radial distribution networks (RDN) gets significantly impacted when plug- in electric vehicles (PEVs) are connected to it in large numbers. The disturbances in the load profile may lead to increased power losses in distribution lines, and deterioration of network voltage profile. Provision of distributed generation (DG) at strategic locations in the distribution network can help to compensate the impact on the electrical network due to PEVs loads. This paper proposes the use of Machine Learning (ML) based models for determining the optimal location of distributed generators (DGs) in RDN. The proposed method considered time-varying load in addition to PEVs load. The suggested method determines optimal DGs placement based on Power loss reduction index (PLRI), and Voltage deviation index reduction index (VDIRI). Four distinct types of ML models were used in the proposed approach using synthesized data on IEEE 33-bus RDN. The performance of the ML models were evaluated with respect to mean squared error (MSE) and mean absolute percentage error (MAPE) and, for the ML models considered, Random Forest ML model gave the best performance.
期刊介绍:
Energy addresses the challenges of energy engineering in the 21st century. The journal publishes groundbreaking papers on energy provision by leading figures in industry and academia and provides a unique forum for discussion on everything from underground coal gasification to the practical implications of biofuels. The journal is a key resource for engineers and researchers working to meet the challenges of energy engineering. Topics addressed include: development of sustainable energy policy, energy efficiency in buildings, infrastructure and transport systems, renewable energy sources, operation and decommissioning of projects, and energy conservation.