导致澳大利亚东南部极端降雨和大洪水的垂直风结构

IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences
Jeff Callaghan, Scott B. Power
{"title":"导致澳大利亚东南部极端降雨和大洪水的垂直风结构","authors":"Jeff Callaghan, Scott B. Power","doi":"10.1071/es16024","DOIUrl":null,"url":null,"abstract":"Here we examine winds associated with extreme rainfall and major flooding in coastal catchments and more broadly over southeastern Australia. Both radio-sonde and re-analysis data are examined. In every case (i) atmospheric moisture content is high and (ii) the low-level winds are onshore, and in almost every case (iii) the wind-direction turns anti-cyclonically with increasing height up to 500 hPa. Data from Brisbane extending back more than 50 years is consistent with this behavior: winds turn anti-cyclonically with increasing height on days with heavy rainfall, whereas winds turn cyclonically with increasing height on days with light or no rainfall. In the coastal zone, extreme rainfall rarely occurs without (i), (ii) and (iii). In eastern Australia beyond the coastal zone, conditions (i) and (iii) are also associated with extreme rainfall. We found very few cases where such conditions were not associated with extreme rainfall in this broader region. This study extends previous work by showing that the link between turning winds and rainfall exists in both the tropics and subtropics, and the link applies in cases of extreme rainfall and associated major flooding.","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"49 11","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vertical wind structure that leads to extreme rainfall and major flooding in southeast Australia\",\"authors\":\"Jeff Callaghan, Scott B. Power\",\"doi\":\"10.1071/es16024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we examine winds associated with extreme rainfall and major flooding in coastal catchments and more broadly over southeastern Australia. Both radio-sonde and re-analysis data are examined. In every case (i) atmospheric moisture content is high and (ii) the low-level winds are onshore, and in almost every case (iii) the wind-direction turns anti-cyclonically with increasing height up to 500 hPa. Data from Brisbane extending back more than 50 years is consistent with this behavior: winds turn anti-cyclonically with increasing height on days with heavy rainfall, whereas winds turn cyclonically with increasing height on days with light or no rainfall. In the coastal zone, extreme rainfall rarely occurs without (i), (ii) and (iii). In eastern Australia beyond the coastal zone, conditions (i) and (iii) are also associated with extreme rainfall. We found very few cases where such conditions were not associated with extreme rainfall in this broader region. This study extends previous work by showing that the link between turning winds and rainfall exists in both the tropics and subtropics, and the link applies in cases of extreme rainfall and associated major flooding.\",\"PeriodicalId\":55419,\"journal\":{\"name\":\"Journal of Southern Hemisphere Earth Systems Science\",\"volume\":\"49 11\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Southern Hemisphere Earth Systems Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1071/es16024\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es16024","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们研究了与沿海集水区和更广泛的澳大利亚东南部的极端降雨和大洪水相关的风。检查了无线电探空和再分析数据。在每一种情况下(1)大气水分含量高,(2)低空风在岸上,并且在几乎每一种情况下(3)风向随着高度的增加而转为反气旋,最高可达500 hPa。布里斯班50多年前的数据与这种行为一致:在强降雨的日子里,风随着高度的增加而转向反气旋,而在少雨或无雨的日子里,风随着高度的增加而转向气旋。在沿海地区,如果没有(i)、(ii)和(iii)条件,极端降雨很少发生。在沿海地区以外的澳大利亚东部,条件(i)和(iii)也与极端降雨有关。我们发现,在这个更广泛的地区,很少有这样的情况与极端降雨无关。这项研究扩展了以前的工作,表明在热带和亚热带都存在着风和降雨之间的联系,这种联系适用于极端降雨和相关的大洪水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vertical wind structure that leads to extreme rainfall and major flooding in southeast Australia
Here we examine winds associated with extreme rainfall and major flooding in coastal catchments and more broadly over southeastern Australia. Both radio-sonde and re-analysis data are examined. In every case (i) atmospheric moisture content is high and (ii) the low-level winds are onshore, and in almost every case (iii) the wind-direction turns anti-cyclonically with increasing height up to 500 hPa. Data from Brisbane extending back more than 50 years is consistent with this behavior: winds turn anti-cyclonically with increasing height on days with heavy rainfall, whereas winds turn cyclonically with increasing height on days with light or no rainfall. In the coastal zone, extreme rainfall rarely occurs without (i), (ii) and (iii). In eastern Australia beyond the coastal zone, conditions (i) and (iii) are also associated with extreme rainfall. We found very few cases where such conditions were not associated with extreme rainfall in this broader region. This study extends previous work by showing that the link between turning winds and rainfall exists in both the tropics and subtropics, and the link applies in cases of extreme rainfall and associated major flooding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Southern Hemisphere Earth Systems Science
Journal of Southern Hemisphere Earth Systems Science Earth and Planetary Sciences-Oceanography
CiteScore
8.10
自引率
8.30%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales. general circulation of the atmosphere and oceans, climate change and variability , climate impacts, climate modelling , past change in the climate system including palaeoclimate variability, atmospheric dynamics, synoptic meteorology, mesoscale meteorology and severe weather, tropical meteorology, observation systems, remote sensing of atmospheric, oceanic and land surface processes, weather, climate and ocean prediction, atmospheric and oceanic composition and chemistry, physical oceanography, air‐sea interactions, coastal zone processes, hydrology, cryosphere‐atmosphere interactions, land surface‐atmosphere interactions, space weather, including impacts and mitigation on technology, ionospheric, magnetospheric, auroral and space physics, data assimilation applied to the above subject areas . Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信