基于大数据分析用户特征的多种图书推荐算法比较

IF 0.5 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
Ruixia Wang, Na He
{"title":"基于大数据分析用户特征的多种图书推荐算法比较","authors":"Ruixia Wang, Na He","doi":"10.1080/07317131.2023.2259691","DOIUrl":null,"url":null,"abstract":"Through big data analysis of borrowing information, it is possible to find the characteristics of different users. This paper applied K-means clustering to classify users. User feature vectors were...","PeriodicalId":43138,"journal":{"name":"Technical Services Quarterly","volume":"7 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Multiple Book Recommendation Algorithms After Analysis of User Characteristics Using Big Data\",\"authors\":\"Ruixia Wang, Na He\",\"doi\":\"10.1080/07317131.2023.2259691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through big data analysis of borrowing information, it is possible to find the characteristics of different users. This paper applied K-means clustering to classify users. User feature vectors were...\",\"PeriodicalId\":43138,\"journal\":{\"name\":\"Technical Services Quarterly\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Services Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07317131.2023.2259691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Services Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07317131.2023.2259691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过对借阅信息的大数据分析,可以发现不同用户的特点。本文采用K-means聚类对用户进行分类。用户特征向量是…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Multiple Book Recommendation Algorithms After Analysis of User Characteristics Using Big Data
Through big data analysis of borrowing information, it is possible to find the characteristics of different users. This paper applied K-means clustering to classify users. User feature vectors were...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Services Quarterly
Technical Services Quarterly INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
0.80
自引率
0.00%
发文量
70
期刊介绍: Technical Services Quarterly is dedicated to providing a forum for the presentation of current developments and future trends concerning the technical operations of libraries and information centers. The journal aims to keep its readers informed of current developments and future trends in research, developments, and practical implementation of systems and applications of traditional and non-traditional technical services and the public operations they influence and sustain. The journal accepts original research, theoretical, and implementation articles pertaining to technical services, automation, networking, document delivery, information technology, library instruction and information literacy, reference and bibliography, case studies, cost analysis, staffing, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信