{"title":"极端情况失真风险度量:封闭解的统一与推广","authors":"Hui Shao, Zhe George Zhang","doi":"10.1287/moor.2022.0156","DOIUrl":null,"url":null,"abstract":"Extreme-case risk measures provide an approach for quantifying the upper and lower bounds of risk in situations where limited information is available regarding the underlying distributions. Previous research has demonstrated that for popular risk measures, such as value-at-risk and conditional value-at-risk, the worst-case counterparts can be evaluated in closed form when only the first two moments of the underlying distributions are known. In this study, we extend these findings by presenting closed-form solutions for a general class of distortion risk measures, which consists of various popular risk measures as special cases when the first and certain higher-order (i.e., second or more) absolute center moments, alongside the symmetry properties of the underlying distributions, are known. Moreover, we characterize the extreme-case distributions with convex or concave envelopes of the corresponding distributions. By providing closed-form solutions for extreme-case distortion risk measures and characterizations for the corresponding distributions, our research contributes to the understanding and application of risk quantification methodologies.Funding: H. Shao acknowledges support from the Yangtze River Delta Science and Technology Innovation Community Joint Research Program [Grant 2022CSJGG0800]. Z. G. Zhang acknowledges support from the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2019-06364].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2022.0156 .","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"229 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme-Case Distortion Risk Measures: A Unification and Generalization of Closed-Form Solutions\",\"authors\":\"Hui Shao, Zhe George Zhang\",\"doi\":\"10.1287/moor.2022.0156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme-case risk measures provide an approach for quantifying the upper and lower bounds of risk in situations where limited information is available regarding the underlying distributions. Previous research has demonstrated that for popular risk measures, such as value-at-risk and conditional value-at-risk, the worst-case counterparts can be evaluated in closed form when only the first two moments of the underlying distributions are known. In this study, we extend these findings by presenting closed-form solutions for a general class of distortion risk measures, which consists of various popular risk measures as special cases when the first and certain higher-order (i.e., second or more) absolute center moments, alongside the symmetry properties of the underlying distributions, are known. Moreover, we characterize the extreme-case distributions with convex or concave envelopes of the corresponding distributions. By providing closed-form solutions for extreme-case distortion risk measures and characterizations for the corresponding distributions, our research contributes to the understanding and application of risk quantification methodologies.Funding: H. Shao acknowledges support from the Yangtze River Delta Science and Technology Innovation Community Joint Research Program [Grant 2022CSJGG0800]. Z. G. Zhang acknowledges support from the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2019-06364].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2022.0156 .\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"229 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0156\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0156","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Extreme-Case Distortion Risk Measures: A Unification and Generalization of Closed-Form Solutions
Extreme-case risk measures provide an approach for quantifying the upper and lower bounds of risk in situations where limited information is available regarding the underlying distributions. Previous research has demonstrated that for popular risk measures, such as value-at-risk and conditional value-at-risk, the worst-case counterparts can be evaluated in closed form when only the first two moments of the underlying distributions are known. In this study, we extend these findings by presenting closed-form solutions for a general class of distortion risk measures, which consists of various popular risk measures as special cases when the first and certain higher-order (i.e., second or more) absolute center moments, alongside the symmetry properties of the underlying distributions, are known. Moreover, we characterize the extreme-case distributions with convex or concave envelopes of the corresponding distributions. By providing closed-form solutions for extreme-case distortion risk measures and characterizations for the corresponding distributions, our research contributes to the understanding and application of risk quantification methodologies.Funding: H. Shao acknowledges support from the Yangtze River Delta Science and Technology Innovation Community Joint Research Program [Grant 2022CSJGG0800]. Z. G. Zhang acknowledges support from the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2019-06364].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2022.0156 .
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.