推导了算术流形在p点的Hecke作用和普通p进上同调

IF 1.7 1区 数学 Q1 MATHEMATICS
Chandrashekhar Khare, Niccoló Ronchetti
{"title":"推导了算术流形在p点的Hecke作用和普通p进上同调","authors":"Chandrashekhar Khare, Niccoló Ronchetti","doi":"10.1353/ajm.2023.a913294","DOIUrl":null,"url":null,"abstract":"<p><p>Abstract:</p><p>We study the derived Hecke action at $p$ on the ordinary $p$-adic cohomology of arithmetic subgroups of reductive groups ${\\rm G}(\\Bbb{Q})$. This is the analog at $\\ell=p$ of derived Hecke actions studied by Venkatesh in the tame case, and is the derived analog of Hida's theory for ordinary Hecke algebras. We show that properties of the derived Hecke action at $p$ are related to deep conjectures in Galois cohomology which are higher analogs of the classical Leopoldt conjecture.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"192 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derived Hecke action at p and the ordinary p-adic cohomology of arithmetic manifolds\",\"authors\":\"Chandrashekhar Khare, Niccoló Ronchetti\",\"doi\":\"10.1353/ajm.2023.a913294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abstract:</p><p>We study the derived Hecke action at $p$ on the ordinary $p$-adic cohomology of arithmetic subgroups of reductive groups ${\\\\rm G}(\\\\Bbb{Q})$. This is the analog at $\\\\ell=p$ of derived Hecke actions studied by Venkatesh in the tame case, and is the derived analog of Hida's theory for ordinary Hecke algebras. We show that properties of the derived Hecke action at $p$ are related to deep conjectures in Galois cohomology which are higher analogs of the classical Leopoldt conjecture.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"192 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a913294\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a913294","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了约化群${\rm G}(\Bbb{Q})$的算术子群$p$-进上同调上$p$处的推导Hecke作用。这是Venkatesh在温顺的情况下研究的推导出的Hecke作用在$\ well =p$处的类比,也是Hida的理论对普通Hecke代数的推导出的类比。我们证明了在$p$处推导出的Hecke作用的性质与伽罗瓦上同调中的深度猜想有关,这是经典利奥波德猜想的高级类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derived Hecke action at p and the ordinary p-adic cohomology of arithmetic manifolds

Abstract:

We study the derived Hecke action at $p$ on the ordinary $p$-adic cohomology of arithmetic subgroups of reductive groups ${\rm G}(\Bbb{Q})$. This is the analog at $\ell=p$ of derived Hecke actions studied by Venkatesh in the tame case, and is the derived analog of Hida's theory for ordinary Hecke algebras. We show that properties of the derived Hecke action at $p$ are related to deep conjectures in Galois cohomology which are higher analogs of the classical Leopoldt conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信