Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang
{"title":"三维二次Zakharov-Kuznetsov方程孤立波的渐近稳定性","authors":"Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang","doi":"10.1353/ajm.2023.a913295","DOIUrl":null,"url":null,"abstract":"<p><p>Abstract:</p><p>We consider the quadratic Zakharov-Kuznetsov equation $$\\partial_t u + \\partial_x \\Delta u + \\partial_x u^2=0$$ on $\\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\\to\\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x>\\delta t-\\tan\\theta\\sqrt{y^2+z^2}$ for $0\\leq\\theta\\leq{\\pi\\over 3}-\\delta$.</p></p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation\",\"authors\":\"Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang\",\"doi\":\"10.1353/ajm.2023.a913295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abstract:</p><p>We consider the quadratic Zakharov-Kuznetsov equation $$\\\\partial_t u + \\\\partial_x \\\\Delta u + \\\\partial_x u^2=0$$ on $\\\\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\\\\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\\\\to\\\\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x>\\\\delta t-\\\\tan\\\\theta\\\\sqrt{y^2+z^2}$ for $0\\\\leq\\\\theta\\\\leq{\\\\pi\\\\over 3}-\\\\delta$.</p></p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a913295\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a913295","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要:考虑$\Bbb{R}^3$上的二次Zakharov-Kuznetsov方程$$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$。孤波解由$Q(x-t,y,z)$给出,其中$Q$是$-Q+\Delta Q+Q^2=0$的基态解。我们证明了这些孤立波解的渐近稳定性。具体来说,我们表明,在能量空间中接近$Q$的初始数据演变为一个解决方案,作为$t\to\infty$,收敛于在$0\leq\theta\leq{\pi\over 3}-\delta$的右移区域$x>\delta t-\tan\theta\sqrt{y^2+z^2}$中重新缩放和移动$L^2$中的$Q(x-t,y,z)$。
Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation
Abstract:
We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\to\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x>\delta t-\tan\theta\sqrt{y^2+z^2}$ for $0\leq\theta\leq{\pi\over 3}-\delta$.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.