三维二次Zakharov-Kuznetsov方程孤立波的渐近稳定性

IF 1.7 1区 数学 Q1 MATHEMATICS
Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang
{"title":"三维二次Zakharov-Kuznetsov方程孤立波的渐近稳定性","authors":"Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang","doi":"10.1353/ajm.2023.a913295","DOIUrl":null,"url":null,"abstract":"<p><p>Abstract:</p><p>We consider the quadratic Zakharov-Kuznetsov equation $$\\partial_t u + \\partial_x \\Delta u + \\partial_x u^2=0$$ on $\\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\\to\\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x&gt;\\delta t-\\tan\\theta\\sqrt{y^2+z^2}$ for $0\\leq\\theta\\leq{\\pi\\over 3}-\\delta$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"192 11","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation\",\"authors\":\"Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang\",\"doi\":\"10.1353/ajm.2023.a913295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abstract:</p><p>We consider the quadratic Zakharov-Kuznetsov equation $$\\\\partial_t u + \\\\partial_x \\\\Delta u + \\\\partial_x u^2=0$$ on $\\\\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\\\\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\\\\to\\\\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x&gt;\\\\delta t-\\\\tan\\\\theta\\\\sqrt{y^2+z^2}$ for $0\\\\leq\\\\theta\\\\leq{\\\\pi\\\\over 3}-\\\\delta$.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"192 11\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a913295\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a913295","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:考虑$\Bbb{R}^3$上的二次Zakharov-Kuznetsov方程$$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$。孤波解由$Q(x-t,y,z)$给出,其中$Q$是$-Q+\Delta Q+Q^2=0$的基态解。我们证明了这些孤立波解的渐近稳定性。具体来说,我们表明,在能量空间中接近$Q$的初始数据演变为一个解决方案,作为$t\to\infty$,收敛于在$0\leq\theta\leq{\pi\over 3}-\delta$的右移区域$x>\delta t-\tan\theta\sqrt{y^2+z^2}$中重新缩放和移动$L^2$中的$Q(x-t,y,z)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation

Abstract:

We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\to\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x>\delta t-\tan\theta\sqrt{y^2+z^2}$ for $0\leq\theta\leq{\pi\over 3}-\delta$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信