Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang
{"title":"三维二次Zakharov-Kuznetsov方程孤立波的渐近稳定性","authors":"Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang","doi":"10.1353/ajm.2023.a913295","DOIUrl":null,"url":null,"abstract":"<p><p>Abstract:</p><p>We consider the quadratic Zakharov-Kuznetsov equation $$\\partial_t u + \\partial_x \\Delta u + \\partial_x u^2=0$$ on $\\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\\to\\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x>\\delta t-\\tan\\theta\\sqrt{y^2+z^2}$ for $0\\leq\\theta\\leq{\\pi\\over 3}-\\delta$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"192 11","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation\",\"authors\":\"Luiz Gustavo Farah, Justin Holmer, Svetlana Roudenko, Kai Yang\",\"doi\":\"10.1353/ajm.2023.a913295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abstract:</p><p>We consider the quadratic Zakharov-Kuznetsov equation $$\\\\partial_t u + \\\\partial_x \\\\Delta u + \\\\partial_x u^2=0$$ on $\\\\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\\\\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\\\\to\\\\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x>\\\\delta t-\\\\tan\\\\theta\\\\sqrt{y^2+z^2}$ for $0\\\\leq\\\\theta\\\\leq{\\\\pi\\\\over 3}-\\\\delta$.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"192 11\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a913295\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a913295","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要:考虑$\Bbb{R}^3$上的二次Zakharov-Kuznetsov方程$$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$。孤波解由$Q(x-t,y,z)$给出,其中$Q$是$-Q+\Delta Q+Q^2=0$的基态解。我们证明了这些孤立波解的渐近稳定性。具体来说,我们表明,在能量空间中接近$Q$的初始数据演变为一个解决方案,作为$t\to\infty$,收敛于在$0\leq\theta\leq{\pi\over 3}-\delta$的右移区域$x>\delta t-\tan\theta\sqrt{y^2+z^2}$中重新缩放和移动$L^2$中的$Q(x-t,y,z)$。
Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation
Abstract:
We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $\Bbb{R}^3$. A solitary wave solution is given by $Q(x-t,y,z)$, where $Q$ is the ground state solution to $-Q+\Delta Q+Q^2=0$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $Q$ in the energy space, evolves to a solution that, as $t\to\infty$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $x>\delta t-\tan\theta\sqrt{y^2+z^2}$ for $0\leq\theta\leq{\pi\over 3}-\delta$.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.