基于双平行马赫-曾德尔调制器的模拟光子链路三阶互调失真抑制

IF 2.3 4区 物理与天体物理 Q2 OPTICS
Mingwei Gao, Jianxin Ma
{"title":"基于双平行马赫-曾德尔调制器的模拟光子链路三阶互调失真抑制","authors":"Mingwei Gao, Jianxin Ma","doi":"10.1080/01468030.2021.2005185","DOIUrl":null,"url":null,"abstract":"<p><b>ABSTRACT</b></p><p>A linearization scheme for the microwave photonic link based on dual-parallel Mach–Zehnder modulator is proposed, which can suppress the third-order intermodulation distortion (IMD3) introduced by the nonlinearity of the electrooptical modulator and thus improve the spurious-free dynamic range (SFDR). By adjusting the optical power splitter, phase shifter, one of the three main factors that produce IMD3 can superimpose destructively with the other two. Theoretical analysis and simulation results show that our proposed scheme has a better electrical signal-to-interference ratio of 24.9 dB than the conventional scheme, and thus the SFDR has a 9 dB·Hz<sup>2/3</sup> improvement. In addition, in the back-to-back system, the error vector magnitude of a 250-MSym/s 16-quadrature-amplitude-modulation is reduced to 2.98% in our proposed scheme compared with the conventional scheme of 14.17%.</p>","PeriodicalId":50449,"journal":{"name":"Fiber and Integrated Optics","volume":"33 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of third-order intermodulation distortion in analog photonic link based on dual-parallel Mach-Zehnder modulators\",\"authors\":\"Mingwei Gao, Jianxin Ma\",\"doi\":\"10.1080/01468030.2021.2005185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>ABSTRACT</b></p><p>A linearization scheme for the microwave photonic link based on dual-parallel Mach–Zehnder modulator is proposed, which can suppress the third-order intermodulation distortion (IMD3) introduced by the nonlinearity of the electrooptical modulator and thus improve the spurious-free dynamic range (SFDR). By adjusting the optical power splitter, phase shifter, one of the three main factors that produce IMD3 can superimpose destructively with the other two. Theoretical analysis and simulation results show that our proposed scheme has a better electrical signal-to-interference ratio of 24.9 dB than the conventional scheme, and thus the SFDR has a 9 dB·Hz<sup>2/3</sup> improvement. In addition, in the back-to-back system, the error vector magnitude of a 250-MSym/s 16-quadrature-amplitude-modulation is reduced to 2.98% in our proposed scheme compared with the conventional scheme of 14.17%.</p>\",\"PeriodicalId\":50449,\"journal\":{\"name\":\"Fiber and Integrated Optics\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fiber and Integrated Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/01468030.2021.2005185\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiber and Integrated Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/01468030.2021.2005185","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了基于双并联马赫-曾德尔调制器的微波光子链路线性化方案,该方案可以抑制电光调制器非线性引起的三阶互调失真,从而提高无杂散动态范围(SFDR)。通过调整光功率分配器、移相器,产生IMD3的三个主要因素之一可以与其他两个因素破坏性地叠加。理论分析和仿真结果表明,与传统方案相比,该方案具有24.9 dB的更好的电信号干扰比,SFDR性能提高了9 dB·Hz2/3。此外,在背靠背系统中,我们提出的方案将250-MSym/s 16正交调幅的误差矢量幅度降低到2.98%,而传统方案的误差矢量幅度为14.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of third-order intermodulation distortion in analog photonic link based on dual-parallel Mach-Zehnder modulators

ABSTRACT

A linearization scheme for the microwave photonic link based on dual-parallel Mach–Zehnder modulator is proposed, which can suppress the third-order intermodulation distortion (IMD3) introduced by the nonlinearity of the electrooptical modulator and thus improve the spurious-free dynamic range (SFDR). By adjusting the optical power splitter, phase shifter, one of the three main factors that produce IMD3 can superimpose destructively with the other two. Theoretical analysis and simulation results show that our proposed scheme has a better electrical signal-to-interference ratio of 24.9 dB than the conventional scheme, and thus the SFDR has a 9 dB·Hz2/3 improvement. In addition, in the back-to-back system, the error vector magnitude of a 250-MSym/s 16-quadrature-amplitude-modulation is reduced to 2.98% in our proposed scheme compared with the conventional scheme of 14.17%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Fiber and Integrated Optics , now incorporating the International Journal of Optoelectronics, is an international bimonthly journal that disseminates significant developments and in-depth surveys in the fields of fiber and integrated optics. The journal is unique in bridging the major disciplines relevant to optical fibers and electro-optical devices. This results in a balanced presentation of basic research, systems applications, and economics. For more than a decade, Fiber and Integrated Optics has been a valuable forum for scientists, engineers, manufacturers, and the business community to exchange and discuss techno-economic advances in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信