酉群的高Siegel-Weil公式:非奇异项

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tony Feng, Zhiwei Yun, Wei Zhang
{"title":"酉群的高Siegel-Weil公式:非奇异项","authors":"Tony Feng, Zhiwei Yun, Wei Zhang","doi":"10.1007/s00222-023-01228-y","DOIUrl":null,"url":null,"abstract":"<p>We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the <span>\\(r^{\\mathrm{th}}\\)</span> central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with <span>\\(r\\)</span> legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Siegel–Weil formula for unitary groups: the non-singular terms\",\"authors\":\"Tony Feng, Zhiwei Yun, Wei Zhang\",\"doi\":\"10.1007/s00222-023-01228-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the <span>\\\\(r^{\\\\mathrm{th}}\\\\)</span> central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with <span>\\\\(r\\\\)</span> legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01228-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01228-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们在厄米什图卡的模堆栈上构造了特殊的环。我们证明了(1)归一化Siegel-Eisenstein级数的非奇异傅立叶系数的\(r^{\mathrm{th}}\)中心导数和(2)具有\(r\)支脚的厄米图卡模堆上“虚维0”的特殊循环的度之间的恒等式。这可以看作是Kudla-Rapoport猜想的函数场模拟,它具有包含爱森斯坦级数的所有高阶导数的附加特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Higher Siegel–Weil formula for unitary groups: the non-singular terms

Higher Siegel–Weil formula for unitary groups: the non-singular terms

We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the \(r^{\mathrm{th}}\) central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with \(r\) legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信