一类新的柯西噪声LASSO回归模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Amir Hossein Ghatari, Mina Aminghafari, Adel Mohammadpour
{"title":"一类新的柯西噪声LASSO回归模型","authors":"Amir Hossein Ghatari, Mina Aminghafari, Adel Mohammadpour","doi":"10.1007/s13253-023-00583-w","DOIUrl":null,"url":null,"abstract":"<p>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define <i>AIC</i> and <i>BIC</i> type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Type of LASSO Regression Model with Cauchy Noise\",\"authors\":\"Amir Hossein Ghatari, Mina Aminghafari, Adel Mohammadpour\",\"doi\":\"10.1007/s13253-023-00583-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define <i>AIC</i> and <i>BIC</i> type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-023-00583-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00583-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

许多数据集具有重尾行为,经典的惩罚模型不适用于它们。为了解决这个问题,我们提出了一个惩罚回归,同时处理模型选择和异常值问题。我们使用负对数似然损失函数为具有柯西分布噪声的模型提供LASSO回归。为了选择正则化参数,我们定义了AIC和BIC类型准则。在仿真实验中研究了回归系数估计量的分布。仿真研究和实际数据集分析验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A New Type of LASSO Regression Model with Cauchy Noise

A New Type of LASSO Regression Model with Cauchy Noise

Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define AIC and BIC type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信