Mauricio Campos, Bo Li, Guillaume de Lafontaine, Joseph Napier, Feng Sheng Hu
{"title":"利用贝叶斯层次模型整合不同数据源揭示冰川避难所","authors":"Mauricio Campos, Bo Li, Guillaume de Lafontaine, Joseph Napier, Feng Sheng Hu","doi":"10.1007/s13253-023-00582-x","DOIUrl":null,"url":null,"abstract":"<p>Rapid anthropogenic climate change has elevated the interest in studying the biotic responses of species during the Last Glacial Maximum. During this period, species retreated to highly spatially restricted geographic regions where survival was possible, known as glacial micro-refugia, from which they migrated and expanded when conditions became more suitable. Several distinct sources of evidence have contributed to developing a new understanding of how these regions might have impacted the sustainability of the natural populations of many species. Pollen records in Eastern Beringia have been used to explore the possibility that the region harbored glacial refugia for several plants from the arctic tundra and/or the boreal forest biomes common to the region. Our study focuses on <i>Alnus viridis</i> and <i>Picea glauca</i>, two predominant species of arcto-boreal vegetation. We propose to integrate genomic, SDM, and existing fossil data in a hierarchical Bayesian modeling (HBM) framework to determine whether multiple refugia existed in isolated geographic areas. This study demonstrates how the flexibility of HBMs makes the formal synthesis of such disparate data sources feasible. Our results highlight the regions of plausible refugia that can guide future investigations into studying the role of glacial refugia during climate change. Supplementary materials accompanying this paper appear online.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Different Data Sources Using a Bayesian Hierarchical Model to Unveil Glacial Refugia\",\"authors\":\"Mauricio Campos, Bo Li, Guillaume de Lafontaine, Joseph Napier, Feng Sheng Hu\",\"doi\":\"10.1007/s13253-023-00582-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid anthropogenic climate change has elevated the interest in studying the biotic responses of species during the Last Glacial Maximum. During this period, species retreated to highly spatially restricted geographic regions where survival was possible, known as glacial micro-refugia, from which they migrated and expanded when conditions became more suitable. Several distinct sources of evidence have contributed to developing a new understanding of how these regions might have impacted the sustainability of the natural populations of many species. Pollen records in Eastern Beringia have been used to explore the possibility that the region harbored glacial refugia for several plants from the arctic tundra and/or the boreal forest biomes common to the region. Our study focuses on <i>Alnus viridis</i> and <i>Picea glauca</i>, two predominant species of arcto-boreal vegetation. We propose to integrate genomic, SDM, and existing fossil data in a hierarchical Bayesian modeling (HBM) framework to determine whether multiple refugia existed in isolated geographic areas. This study demonstrates how the flexibility of HBMs makes the formal synthesis of such disparate data sources feasible. Our results highlight the regions of plausible refugia that can guide future investigations into studying the role of glacial refugia during climate change. Supplementary materials accompanying this paper appear online.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-023-00582-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00582-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating Different Data Sources Using a Bayesian Hierarchical Model to Unveil Glacial Refugia
Rapid anthropogenic climate change has elevated the interest in studying the biotic responses of species during the Last Glacial Maximum. During this period, species retreated to highly spatially restricted geographic regions where survival was possible, known as glacial micro-refugia, from which they migrated and expanded when conditions became more suitable. Several distinct sources of evidence have contributed to developing a new understanding of how these regions might have impacted the sustainability of the natural populations of many species. Pollen records in Eastern Beringia have been used to explore the possibility that the region harbored glacial refugia for several plants from the arctic tundra and/or the boreal forest biomes common to the region. Our study focuses on Alnus viridis and Picea glauca, two predominant species of arcto-boreal vegetation. We propose to integrate genomic, SDM, and existing fossil data in a hierarchical Bayesian modeling (HBM) framework to determine whether multiple refugia existed in isolated geographic areas. This study demonstrates how the flexibility of HBMs makes the formal synthesis of such disparate data sources feasible. Our results highlight the regions of plausible refugia that can guide future investigations into studying the role of glacial refugia during climate change. Supplementary materials accompanying this paper appear online.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.