Mauricio Campos, Bo Li, Guillaume de Lafontaine, Joseph Napier, Feng Sheng Hu
{"title":"利用贝叶斯层次模型整合不同数据源揭示冰川避难所","authors":"Mauricio Campos, Bo Li, Guillaume de Lafontaine, Joseph Napier, Feng Sheng Hu","doi":"10.1007/s13253-023-00582-x","DOIUrl":null,"url":null,"abstract":"<p>Rapid anthropogenic climate change has elevated the interest in studying the biotic responses of species during the Last Glacial Maximum. During this period, species retreated to highly spatially restricted geographic regions where survival was possible, known as glacial micro-refugia, from which they migrated and expanded when conditions became more suitable. Several distinct sources of evidence have contributed to developing a new understanding of how these regions might have impacted the sustainability of the natural populations of many species. Pollen records in Eastern Beringia have been used to explore the possibility that the region harbored glacial refugia for several plants from the arctic tundra and/or the boreal forest biomes common to the region. Our study focuses on <i>Alnus viridis</i> and <i>Picea glauca</i>, two predominant species of arcto-boreal vegetation. We propose to integrate genomic, SDM, and existing fossil data in a hierarchical Bayesian modeling (HBM) framework to determine whether multiple refugia existed in isolated geographic areas. This study demonstrates how the flexibility of HBMs makes the formal synthesis of such disparate data sources feasible. Our results highlight the regions of plausible refugia that can guide future investigations into studying the role of glacial refugia during climate change. Supplementary materials accompanying this paper appear online.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"139 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Different Data Sources Using a Bayesian Hierarchical Model to Unveil Glacial Refugia\",\"authors\":\"Mauricio Campos, Bo Li, Guillaume de Lafontaine, Joseph Napier, Feng Sheng Hu\",\"doi\":\"10.1007/s13253-023-00582-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid anthropogenic climate change has elevated the interest in studying the biotic responses of species during the Last Glacial Maximum. During this period, species retreated to highly spatially restricted geographic regions where survival was possible, known as glacial micro-refugia, from which they migrated and expanded when conditions became more suitable. Several distinct sources of evidence have contributed to developing a new understanding of how these regions might have impacted the sustainability of the natural populations of many species. Pollen records in Eastern Beringia have been used to explore the possibility that the region harbored glacial refugia for several plants from the arctic tundra and/or the boreal forest biomes common to the region. Our study focuses on <i>Alnus viridis</i> and <i>Picea glauca</i>, two predominant species of arcto-boreal vegetation. We propose to integrate genomic, SDM, and existing fossil data in a hierarchical Bayesian modeling (HBM) framework to determine whether multiple refugia existed in isolated geographic areas. This study demonstrates how the flexibility of HBMs makes the formal synthesis of such disparate data sources feasible. Our results highlight the regions of plausible refugia that can guide future investigations into studying the role of glacial refugia during climate change. Supplementary materials accompanying this paper appear online.</p>\",\"PeriodicalId\":56336,\"journal\":{\"name\":\"Journal of Agricultural Biological and Environmental Statistics\",\"volume\":\"139 6\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Biological and Environmental Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-023-00582-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00582-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Integrating Different Data Sources Using a Bayesian Hierarchical Model to Unveil Glacial Refugia
Rapid anthropogenic climate change has elevated the interest in studying the biotic responses of species during the Last Glacial Maximum. During this period, species retreated to highly spatially restricted geographic regions where survival was possible, known as glacial micro-refugia, from which they migrated and expanded when conditions became more suitable. Several distinct sources of evidence have contributed to developing a new understanding of how these regions might have impacted the sustainability of the natural populations of many species. Pollen records in Eastern Beringia have been used to explore the possibility that the region harbored glacial refugia for several plants from the arctic tundra and/or the boreal forest biomes common to the region. Our study focuses on Alnus viridis and Picea glauca, two predominant species of arcto-boreal vegetation. We propose to integrate genomic, SDM, and existing fossil data in a hierarchical Bayesian modeling (HBM) framework to determine whether multiple refugia existed in isolated geographic areas. This study demonstrates how the flexibility of HBMs makes the formal synthesis of such disparate data sources feasible. Our results highlight the regions of plausible refugia that can guide future investigations into studying the role of glacial refugia during climate change. Supplementary materials accompanying this paper appear online.
期刊介绍:
The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.